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Application of Convolutional Neural
Networks in Breast Cancer Detection:
Hybrid and Attention-based Models

Abstract:

Junshuang Wang For breast cancer, a malignant tumor developing from

breast epithelial tissue, the limitations of traditional
Electronic and Information fiiagpostic methods. '(e.g., diagnostic errors and
Grminsaming, Smmen Uk T invasiveness) creajce 9r1t.1cal (fhallengesi underscoring .the
Kah Kee College, Xiamen, China urgent need for artificial intelligence-assisted technological
development. This paper systematically reviews the
applications of Convolutional Neural Networks (CNNs)
across the entire workflow of breast cancer, including
screening, diagnosis, and prognosis, with a focus on hybrid
CNNs such as architectures combining Transformer/
Long Short-Term Memory (LSTM) and CNN-Support
Vector Machine (SVM) models and attention-based CNNs
such as contour-enhanced attention and cross-attention
mechanisms. It analyzes how these models automate
feature extraction from medical images to achieve breast
lesion detection, benign-malignant differentiation, and
prognosis prediction. Results show that hybrid models
like Fusion of Hybrid Deep Features (FHDF) achieve over
98% classification accuracy on datasets such as MIAS
by fusing features from multiple CNNs, while attention-
based models like Convolutional Block Attention Module
(CBAM)-Xception attain an Area Under Curve (AUC) of
0.97 and an accuracy of 89.1% in differentiating benign
and malignant lesions. However, challenges remain,
including insufficient interpretability, cross-institutional
data heterogeneity, and privacy risks. The study proposes
integrating medical expert systems and applying transfer
learning and domain adaptation techniques to enhance
model reliability and generalizability, promoting the
translation of CNN technologies into clinical practice and
constructing a precise and trustworthy Al-driven breast
cancer diagnosis and treatment system.
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1. Introduction

Breast cancer is defined as a malignant neoplasm that
originates from the epithelial tissue of the breast. It oc-
curs due to genetic mutations in breast cells, leading to
abnormal and uncontrolled cell proliferation that forms
a neoplastic mass. These mutated cells can locally in-
vade adjacent tissues and organs, or metastasize distantly
through the lymphatic or circulatory systems. Breast
cancer causes extensive harm. Without treatment, it can
progress to cachexia and death. Additionally, it inflicts
heavy psychological stress, triggering emotional distress,
anxiety, and depression. Traditional diagnostics (clinical
exams, imaging like mammography/ultrasound/MRI, and
biopsies) have key disadvantages: clinical palpation miss-
es small/deep lesions due to subjectivity; imaging faces
issues like mammography’s poor dense-breast resolution
and radiation risks, ultrasound’s microcalcification insen-
sitivity, and MRI’s high cost/false positives; biopsies risk
under-sampling (fine-needle) or invasiveness/complica-
tions (core/surgical). These highlight the urgent need for
advanced assisted diagnostic technologies such as artifi-
cial intelligence algorithms.

Artificial Intelligence (Al), particularly Convolutional
Neural Networks (CNNs), has brought breakthroughs to
breast cancer diagnosis and treatment. With their ability
to automatically extract features, CNNs have been applied
to medical image classification and segmentation tasks,
such as lung lesion identification and fundus disease
diagnosis. In breast cancer research, technologies like
Deep Belief Networks (DBNs) improve the efficiency of
histopathological image classification and reduce manual
misdiagnosis rates [1-3]. For example, deep CNNs have
achieved 88% accuracy in breast abnormality classifica-
tion, and CNN-based analysis of high-resolution images
outperforms traditional machine learning models in pre-
cision. Standard CNN-based breast cancer classification
methods rely on prior knowledge. Although they excel in
the local feature extraction, they lack global perception.
Transformer, while capable of capturing global dependen-
cy relationships, requires massive data and has insufficient
low-level feature extraction. Compared with models such
as VGG-19, ResNet-50, and ViT, hybrid architectures
are significantly superior in terms of indicators, verifying
the effectiveness of fusing local and global features [4].
Given the computational intensity of Transformers and
the difficulty of optimizing efficiency and feature repre-
sentation in 3D segmentation, HCMA-UNet—a hybrid
architecture—is proposed. It employs an encoder-decoder
framework to integrate CNN“s local feature extraction and
Mamba‘s global modeling capabilities. It is a lightweight
and high-precision automatic segmentation algorithm
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that reduces clinical dependence on manual segmentation
[5]. Current research still needs to address: significant
variations in datasets, architectures, and training methods
across studies, leading to poor comparability of results;
and the need to enhance the reliability and interpretability
of models for clinical use. Therefore, a systematic review
of CNN applications in the full workflow of breast cancer
(screening, diagnosis, and prognosis) is crucial to unify
research foundations and accelerate technological transla-
tion into clinical practice.

Given the rapid evolution of convolutional neural net-
works (CNNs) in breast cancer care, this paper systemati-
cally reviews their applications across the full breast can-
cer workflow (screening, diagnosis, prognosis). The study
first classifies CNN-based technical strategies, including
hybrid CNN and attention-based CNN architectures, and
evaluates their efficacy in breast lesion detection, be-
nign-malignant differentiation, and prognosis prediction. It
then deeply analyzes the core bottlenecks restricting clin-
ical translation: inconsistent cross-institutional data anno-
tation standards, insufficient generalization of models to
rare subtypes (such as triple-negative breast cancer), and
the ,,black-box“ nature of deep models that renders the
extraction logic of pathological features (e.g., mass mar-
gins, calcification patterns) uninterpretable. In response to
these challenges, the paper proposes future development
pathways: establishing multi-center standardized datasets
to bridge data heterogeneity, developing interpretable
CNN architectures embedded with medical rules (such as
hybrid models integrating expert systems), and enhancing
model reliability through large-scale clinical cohort vali-
dation. These explorations will propel CNN technologies
from the laboratory to clinical practice, constructing a
precise and trustworthy Al-driven breast cancer diagnosis
and treatment system, and ultimately improving patient
survival outcomes.

2. Introduction of CNNs and Related
Variants

2.1 Preliminaries of CNN

CNNs are built with a series of specialized layers includ-
ing convolutional layers, pooling layers, activation layers,
normalization layers and fully connected layers. Convo-
lutional layers utilize trainable filters to slide over input
data, detecting local features like edges, textures, and
shapes by computing dot products. Pooling layers (max
or average) then downsample these feature maps, reduc-
ing spatial dimensions to cut computation and enhance
translation invariance. Activation layers, such as Rectified
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Linear Unit (ReLU), introduce nonlinearity, allowing the
network to learn complex, hierarchical representations—
critical for capturing real - world patterns. Normalization
layers (e.g., Batch Normalization) stabilize training by
normalizing inputs, mitigating internal covariate shift.
Fully - connected layers at the end integrate global infor-
mation from across the network, mapping features to final
outputs for tasks like classification or segmentation.

2.2 Attention-Based CNN

2.2.1 Contour-enhanced attention

Karthik et al. proposes a Contour-Enhanced Attention
CNN [6]. The framework adopts an encoder-decoder
architecture, where the encoder uses a Multi-Kernel En-
coding (MKE) module with multi-branch convolutions to
extract multi-scale features. The Cross-Context Attention
Fusion (CCAF) upsampler employs a query-key-value
mechanism to extract structural details from auxiliary
encoder features, enabling lossless reconstruction of
high-resolution features. The decoder first extracts CT
contour regions via edge detection and threshold segmen-
tation, generates convolutional features through a Contour
Feature Extraction (CFE) network, and then fuses bound-
ary/shape cues from contours with deep semantic features
using pixel-level attention within 3x3 windows to refine
segmentation. Experiments on MosMedData and Jun Ma
datasets, followed by preprocessing and data augmenta-
tion, are trained with the Adam optimizer on dual GPUs,
achieving a Dice coefficient of 85.43%. This approach
addresses the challenges of blurred boundaries and com-
plex morphologies in infected areas, providing a reliable
solution for clinical auxiliary diagnosis.

2.2.2 Cross-attention

A total of 160 samples were collected and grouped by fea-
ture dimensions. After preprocessing including region an-
notation and standardization, 5-fold cross-validation (80%
training / 20% testing) was performed, with the model
trained for 200 epochs using the RMSprop optimizer. Per-
formance was evaluated using metrics such as accuracy
and AUC.

The model framework consists of: a three-branch architec-
ture (SFEpath for shallow feature extraction, LTTpath1/2
for multi-scale deep feature extraction via asymmetric
convolutions with residual connections); a cross-attention
module fusing spatial/channel attention to enhance critical
feature extraction; and a deep feature fusion module that
integrates multi-branch outputs through concatenation and
dimensionality reduction. Key innovations include: col-
laborative enhancement of feature discrimination through
multi-branch and cross-attention mechanisms; optimiza-

tion of classification performance by integrating external
feature parameters; and a lightweight architecture that
achieves comparable accuracy to traditional CNNs with
significantly improved computational efficiency [7].

2.2.3 A deep spatial attention

Lu et al. introduced SAFNet, an innovative breast cancer
detection framework utilizing ultrasound imaging, which
employs a ResNet-18 architecture with spatial attention
modules as its foundational network through transfer
learning. When extracting image features, ResNet-18
is first pre-trained on ImageNet and fine-tuned on the
ultrasound dataset. It is between the ReLU and multipli-
cation layers that the spatial attention module is placed,
leveraging pooling and fusion techniques to refine feature
extraction. In the classification stage, three randomized
neural networks, including Extreme Learning Machine
(ELM), Random Vector Functional-Link Network (RVFL),
and Schmidt Neural Network (SNN), are trained as clas-
sifiers. A late fusion mechanism with majority voting is
used to integrate the prediction results of the three, and
5-fold cross-validation is adopted to evaluate the model
performance. Its innovations lie in combining the spatial
attention module with ResNet-18 to enhance feature ex-
traction ability; using three randomized neural networks
as classifiers to avoid overfitting and enable efficient
training; and introducing a majority voting fusion strategy
to enhance classification stability. Experiments show that
SAFNet achieves excellent results on a public ultrasound
dataset, with an average accuracy of 94.10%, outper-
forming four existing methods. Grad-CAM visualization
demonstrates that it can accurately locate lesion areas,
providing an effective tool for clinical breast cancer diag-
nosis [8].

2.2.4 Large separable kernel attention

The LSKA module makes Vision Attention Networks
function faster by changing the LKA process. It replaces
the 2D depth-wise convolution with successive 1D ker-
nels along orthogonal spatial dimensions, which are then
combined by hybrid pooling-convolution operations. The
primary innovation of this work is the deconstruction
of LKA’s 2D depth-wise convolution into a sequence
of 1D horizontal and vertical kernels. These kernels are
then combined through convolution fusion and average/
max pooling. This direct replacement of standard depth-
wise convolution reduces computational complexity and
memory overhead. The architecture uses a pre-trained
ResNet-18 backbone with embedded LSKA modules for
feature extraction, generates attention maps via 1x1 con-
volutions, and integrates three randomized neural network
classifiers through majority voting. Performance is evalu-



ated using 5-fold cross-validation across image classifica-
tion, object detection, and semantic segmentation tasks.
Key innovations include resolving LKA‘s quadratic com-
putational growth with kernel decomposition, enabling the
model to focus on object shapes over textures as kernel
size increases, thereby enhancing robustness to image
corruptions. LSKA maintains comparable performance to
LKA while significantly reducing parameters and compu-
tations, offering an efficient solution for large-kernel con-
volutions in vision tasks [9].

2.2.5 Cascaded dual attention

The DA-CNN+Bi-GRU framework developed by Ullah et
al. combines the attention CNN and the recurrent network,
and uses a 7:3 ratio for training and validation on five
public datasets. The Adam optimizer is applied for 300 ep-
ochs with a batch size of 16 and a sequence length of 16
frames, evaluating performance via accuracy and FPS.
The overall framework consists of three parts: a light-
weight CNN architecture (8 convolutional layers with up
to 64 3x3 kernels) for spatial feature extraction, a dual
attention module (fusing channel and spatial attention)
to enhance focus on action regions, and a bi-directional
GRU network (3-layer bidirectional structure) to capture
long-term temporal patterns. Innovations lie in designing
a lightweight dual attention CNN to focus on human key
areas through channel-spatial attention mechanisms, com-
bining with bi-directional GRU to enable forward-back-
ward gradient learning for enhanced temporal modeling.
The framework requires only 5.4MB storage, achieves
300FPS inference speed on GPU, outperforms existing
methods on multiple datasets, and balances accuracy and
efficiency [10].

2.3 Hybrid CNN
2.3.1 Hybrid CNN-MLP model

Linear and angular acceleration signals are acquired via
shaft-mounted wireless sensors. The linear signals under-
go Hilbert-Huang Transform (HHT) to generate 32x32
time-frequency images as inputs for a CNN, while the
angular acceleration signals are processed using Fast Fou-
rier Transform (FFT) to compute signal power at the first
two torsional mode frequencies (N1, N2) as inputs for an
MLP, forming a ,,CNN+MLP* hybrid architecture. The
CNN branch employs three convolution-pooling layers for
feature extraction, and the MLP branch performs two fully
connected layers on N1 and N2, with final classification
achieved through feature fusion. Key innovations include
the first use of shaft-mounted sensors for high-sensitivity
data acquisition, the design of a hybrid model architecture
for heterogeneous input processing, and the integration of
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HHT time-frequency images with signal power features to
enhance feature representation capabilities [11].

2.3.2 CNN-LSTM-Transformer model

The self-organizing map (SOM) algorithm’s topological
mapping capability is exploited for seasonal clustering
of input data, enabling the retention of data distribution
patterns in a lower-dimensional space.The preprocessing
pipeline includes z-score normalization for feature scale
standardization, followed by temporal segmentation to
align with seasonal periodicity. The CNN component,
consisting of 4 layers with 3x3 kernels and ReLU ac-
tivations, extracts hierarchical spatial features through
alternating convolution-max pooling operations, while a
2-layer LSTM with 256 units captures long-range tempo-
ral dependencies via memory cell structures.

The Transformer module integrates 8-head multi-head
self-attention mechanisms with probe-sparse operations,
dynamically pruning irrelevant attention connections to
reduce computational complexity by 40% compared to
standard architectures. A generative decoder employs
autoregressive prediction for multi-step output optimiza-
tion. The framework comprises three functional modules:
data collection with adaptive sampling and noise filter-
ing;cross-modal feature fusion of CNN-extracted spatial
maps and LSTM-encoded temporal sequences; model
evaluation using point-wise and distribution-based metrics
[12].

2.3.3 CNN-SVM model

The hybrid CNN-SVM model adheres to a systematic
workflow of ,,preprocessing-segmentation-feature ex-
traction-classification. It commences by downsampling
original images to 32x32 resolution, followed by median
filtering to suppress noise artifacts and histogram equal-
ization for contrast enhancement. Otsu‘s thresholding
algorithm is applied to binarize grayscale images, dynam-
ically determining optimal cutoff values to isolate regions
of interest. This CNN model consists of four layers, each
layer is alternately composed of 3x3 convolutional op-
erations and 2x2 stride max - pooling operations. ReLU
is used as the activation function to automatically learn
multi - level spatial features. The penultimate fully con-
nected layer projects these features into a compact vector
space, which serves as input to a multi-class SVM classifi-
er. Leveraging kernel functions (e.g., RBF or polynomial),
the SVM optimizes hyperplane margins through structural
risk minimization, enabling robust classification even with
limited labeled data. This integration of CNN‘s feature
engineering capabilities and SVM*s generalization prow-
ess yields efficient handling of non-linear patterns while
mitigating overfitting [13].
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2.3.4 CNN-BIiLSBVM model

A hybrid CNN-BiLSTM model is proposed for long-
term sequence forecasting. The model preprocesses nine
predictor variables, including various time-series and cat-
egorical features, normalizing and reshaping them into a
9%4 matrix. A CNN layer with 256 2x2 kernels and max
pooling extracts spatial features, which are flattened and
fed into a 500-unit BiLSTM layer to capture bidirectional
temporal dependencies. A dropout layer (rate 0.5) prevents
overfitting, and a fully connected layer generates multi-
step predictions. The innovation lies in fusing CNN-‘s
noise filtering/feature extraction with BiILSTMs bidirec-
tional temporal context learning, forming an integrated
,feature extraction-temporal modeling-prediction* frame-
work for complex sequence forecasting tasks [14].

3. The Application and Discussion of
CNNs in Breast Cancer Detection

3.1 CNN-Based Approaches in Breast Cancer
3.1.1 Hybrid CNN model

For breast cancer detection, the HCPELM model innova-
tively integrates a CNN feature extractor and a pruned in-
tegrated extreme learning machine classifier. By applying
the ReLU activation function for data analytics enhance-
ment, the model further includes preprocessing to elimi-
nate artifacts and pectoral muscles from mammogram im-
ages. Combine the spatial feature extraction ability of the
convolutional network and the non - linear classification
characteristics of the fully - connected layer, and cooper-
ate with the transfer learning mechanism of layer freezing
to achieve parameter optimization. HCPELM, trained
on the MIAS database, achieves an 86% accuracy rate
in breast image recognition. This performance exceeds
benchmark deep learning models and highlights its utility
for early breast cancer diagnosis [15].

For the multi - classification problem of breast cancer,
researchers have developed the FHDF framework. First,
pre-processing such as pectoralis muscle removal and im-
age enhancement is carried out on mammogram images.
Mammogram images undergo pre-processing, which in-
cludes the elimination of the pectoralis muscle and the en-
hancement of the image. The approach outperforms single
CNN models and traditional late fusion methods, demon-
strating the effectiveness of multi-feature collaboration in
identifying complex lesions [16].

3.1.2 Attention-Based CNN

To improve the accuracy of breast cancer diagnosis, re-
searchers skillfully converted the CBAM attention module

into three CNN architectures (DenseNet121/Xception/
ResNet50) for development. The study involved 1, 239
patients across multiple centres, with region-of-interest
(ROI) segmentation performed by experienced radiolo-
gists. The CBAM-Xception model demonstrated superior
performance, achieving an area under the ROC curve
(AUC) of 0.970, 84.8% sensitivity, 100% specificity,
and 89.1% accuracy on the external test set. This outper-
formed conventional radiomics models and two radiol-
ogists, while also improving inter-rater agreement when
assisting radiologists in breast cancer assessment. The
clinical application value of this model in non-invasive
thoracic. Confirm the classification of lesions through
visual inspection. Introduce the main diagnostic areas of
breast cancer for use [17].

An interpretable attention mechanism deep learning mod-
el has been created by the Anari research team. By com-
bining the UNet architecture with ResNet-18, DenseN-
et-121, and EfficientNet-B0O encoders, it achieves accurate
segmentation of breast cancer tumors. The model incor-
porates CBAM and Non-Local Attention mechanisms to
enhance focus on tumor regions, using Depthwise Sepa-
rable Convolutions to reduce computational complexity.
Trained on the BUSI dataset, it achieved a Dice score
of 0.6140 and AUC of 0.97, outperforming state-of-the-
art models like Swin-UNet and ADU-NET. Grad-CAM
visualizations validated its ability to accurately highlight
breast cancer tumor areas, demonstrating clinical potential
for improving segmentation accuracy in breast cancer di-
agnosis [18].

3.2 Discussion

Although many progresses have been achieved for CNN-
based classification models such as hybrid CNN and atten-
tion-based CNN, several challenges including insufficient
interpretability, limited generalizability and privacy risks
should be considered.

Insufficient Interpretability: Both models struggle to
explain to clinicians how they extract key pathological
features (such as mass margins and calcification distri-
butions) from breast imaging. Their ,,black-box* nature
obscures the logic behind diagnostic decisions, making it
difficult for medical professionals to trust or validate the
models’ conclusions.

Limited Generalizability: Breast imaging data vary sig-
nificantly across hospitals due to differences in equipment
models, imaging parameters, and annotation standards.
This heterogeneity causes models to underperform in
cross-institutional applications, particularly for rare breast
cancer subtypes (e.g., triple-negative breast cancer) with
small sample sizes. Additionally, as pathological diagnos-



tic standards evolve with new research, models require
frequent retraining, limiting their adaptability and practi-
cality.

Privacy Risks: Breast imaging contains sensitive patient
information, and traditional model training relies on cen-
tralized data storage, posing significant leakage risks.
While technologies like federated learning enable decen-
tralized training, gradient data in cross-institutional col-
laborations remain vulnerable to adversarial reconstruc-
tion attacks. Adding privacy-preserving techniques (e.g.,
differential privacy) often degrades model performance,
creating a trade-off between privacy protection and diag-
nostic accuracy.

To overcome the bottlenecks in the application of Hybrid
CNN and attention-based CNN in breast cancer, there
are two key development directions. On one hand is the
integration of expert systems and domain knowledge. An
expert system is like translating the diagnostic experi-
ence and rules accumulated by medical experts over the
years—such as ,,irregular mass margins with clustered
calcifications suggest malignancy“—into program logic
that computers can understand, which is then combined
with CNN. This makes the model no longer a black box,
allowing doctors to understand how it makes judgments.
The attention mechanism in the model is guided by this
knowledge, which helps the model focus on image re-
gions with true diagnostic value and elevates the accuracy
and credibility of diagnoses. On the other hand, there is
the application of transfer learning and domain adaptation
techniques. Transfer learning is akin to enabling the mod-
el to ,,stand on the shoulders of giants*: first, pre-training
the model on large amounts of other medical imaging data
to learn general image feature extraction capabilities, and
then fine-tuning it on breast cancer data from specific in-
stitutions to reduce reliance on small amounts of data from
a single institution. Domain adaptation techniques aim
to address data differences caused by varying equipment
and imaging parameters across hospitals. By adjusting the
model’s feature representation or training methods, these
techniques ensure the model performs stably on data from
different institutions, particularly for accurately diagnos-
ing rare subtypes like triple-negative breast cancer. Ad-
ditionally, incremental learning and other methods allow
the model to automatically optimize as medical diagnostic
standards evolve. The synergistic effort of these two types
of technologies can balance interpretability, generaliz-
ability, and privacy protection, propelling Al diagnostic
technologies for breast cancer toward more practical and
reliable clinical applications.
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4. Conclusion

This article systematically investigates hybrid CNN and
attention-based CNN models to tackle diagnostic chal-
lenges in breast cancer. These frameworks enable auto-
mated feature extraction from medical images, demon-
strating superior performance over traditional approaches.
However, limitations like black-box interpretability,
cross-hospital data variability, and privacy risks in central-
ized training were identified. To overcome these, this ar-
ticle advocates integrating expert medical knowledge into
model architectures for transparency and applying transfer
learning with domain adaptation to enhance generaliz-
ability across institutions. These strategies aim to develop
robust, interpretable Al tools that balance diagnostic ac-
curacy with privacy protection, fostering clinical adoption
for improved breast cancer care.
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