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Using Cloud Based and Random Forest to
Predict the Frequency of the Solar Flare

Abstract:

Pingyu Li Solar flares are intense bursts of radiation from the sun that
can significantly impact space weather, disrupting satellite
communications, GPS systems, and even terrestrial power
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tuning performed via GridSearchCV to enhance predictive
accuracy. The preprocessing pipeline includes label
encoding for categorical attributes such as Zurich class,
spot size, and spot distribution, alongside the removal of
redundant or low-variance features. Our model achieves
competitive performance, with a mean squared error (MSE)
and a mean absolute error (MAE). To support scalable data
processing and model training, the system was deployed on
a cloud-based platform. The results highlight the promise
of machine learning techniques in advancing space weather
forecasting capabilities, offering potential benefits for
early-warning systems and infrastructure resilience.
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1. Introduction dependent on space-based technologies and intercon-
nected electrical infrastructure, the ability to forecast
solar flare events has become more crucial than ever.
Understanding the mechanisms of solar flares and
improving early-warning capabilities are essential
not only for scientific advancement but also for safe-

Solar flares are sudden and powerful bursts of elec-
tromagnetic radiation from the Sun’s atmosphere,
typically associated with sunspot activity and mag-
netic reconnection events. These eruptions can

release energy equivalent to millions of nuclear ex- guarding critical systems and services on Earth.

plosions, severely disrupting Earth’s magnetosphere,  Traditional forecasting methods for solar flares
ionosphere, and various technological systems. Their largely rely on statistical correlations and phys-
impacts include interference with satellite operations,  j.q_based models derived from solar magnetic field
disruption of radio and GPS communications, radia-  ypservations. While these methods have provided
tion hazards for astronauts, and voltage instabilities  y3ndational insights, they often struggle with the
in power grids. As our society becomes increasingly highly dynamic, nonlinear, and complex nature of



solar activity. In contrast, machine learning (ML) models
offer a data-driven approach that can uncover intricate
patterns and interactions among features that may precede
flare events. One earlier study showed that by analyzing
specific features in solar magnetic data, ML models such
as support vector machines can provide more timely and
accurate flare forecasts than traditional techniques [1].
Another investigation demonstrated how using detailed
vector field data as input, ML-based classifiers were able
to make more reliable predictions of flare-producing sun-
spot regions [2].

Ensemble learning models have also gained attention due
to their improved performance. Research using Extreme-
ly Randomized Trees revealed that integrating multiple
magnetic field-related features led to more robust predic-
tions, especially in terms of recall and precision [3]. Deep
learning techniques have been leveraged as well. Models
built with convolutional neural networks trained on solar
magnetogram images were effective in recognizing spatial
flare patterns [4]. Other approaches used recurrent neural
networks, including LSTMs, to track how active regions
evolved over time and better anticipate significant solar
events [5,6].

Despite these advances, many deep learning models
rely on high-resolution image or time-series data from
specialized instruments like NASA‘s Solar Dynamics
Observatory (SDO), which may not be accessible for all
applications. This study aims to create a more practical,
interpretable model using the UCI Solar Flare Dataset—
a widely available tabular dataset containing sunspot and
flare records. By integrating scalable cloud infrastructure
and ensemble learning, this research seeks to demonstrate
a reliable and reproducible ML framework for operational
space weather forecasting.

2. Related Work

Over the past decade, a growing body of research has
explored the use of machine learning techniques for solar
flare prediction, motivated by the limitations of traditional
statistical and physics-based models. Early efforts focused
on binary classification tasks, such as distinguishing be-
tween flare-producing and non-flare-producing active
regions. For example, Ahmed et al. (2013) applied Sup-
port Vector Machines (SVMs) to solar magnetic field data
from the Solar Dynamics Observatory (SDO), achieving
reasonable accuracy in predicting flare occurrences within
24-hour windows. Similarly, Bobra and Couvidat used
vector magnetic field data from the Helioseismic and
Magnetic Imager (HMI) onboard SDO to train an SVM
classifier, demonstrating improved prediction performance
compared to baseline probabilistic models.
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In addition to SVMSs, other supervised learning methods
like decision trees, k-nearest neighbors, and logistic re-
gression have been explored, but ensemble models such
as Random Forests and Gradient Boosting Machines have
gained popularity due to their robustness and ability to
model nonlinear relationships. Nishizuka et al. introduced
a flare prediction system using the Extremely Randomized
Trees (ERT) algorithm, incorporating multiple features
such as total unsigned magnetic flux and horizontal gra-
dient of magnetic field strength. Their model achieved
notable improvements in both precision and recall, estab-
lishing a benchmark for probabilistic flare forecasting.
More recently, deep learning approaches have emerged
as powerful tools for solar flare prediction, particularly
for capturing temporal dynamics in solar activity. Convo-
lutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), including Long Short-Term Memory
(LSTM) networks, have been applied to both image data
and time-series measurements from solar observatories.
For instance, Huang et al. developed a CNN model trained
on solar magnetograms and achieved state-of-the-art re-
sults in multi-class flare prediction tasks. In a separate
study, Chen et al. used LSTM networks to model the tem-
poral evolution of active regions, demonstrating superior
performance in predicting major flare events compared to
static models.

While these studies highlight the potential of advanced
ML algorithms, many rely on large volumes of high-reso-
lution solar data from observatories like SDO, which may
not be readily available for all applications. The present
study takes a different approach by using the UCI Solar
Flare Dataset—a tabular dataset with categorical and nu-
merical features—to develop a Random Forest regression
model. By focusing on interpretable models and widely
accessible data, this work contributes to making solar flare
prediction more practical and scalable for real-world de-
ployment in operational forecasting systems.

3. Methodology

3.1 Data Processing

To prepare the UCI Solar Flare Dataset for machine
learning analysis, a structured preprocessing pipeline was
implemented with a focus on categorical feature handling
and computational efficiency. The key categorical vari-
ables—modified Zurich class, largest spot size, and spot
distribution—were encoded using a simple integer label
encoding scheme. Each unique category within a feature
was mapped to an integer based on lexically sorted order
(e.g., ,A° — 0, ,B° — 1). This mapping was performed
sequentially using a single encoder instance that was reset
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between features to avoid state contamination (Table 1).
While this encoding method does not preserve catego-
ry-to-integer mappings across features, it simplifies model
input and ensures uniformity.

From a technical perspective, this approach offers favor-
able computational properties. The time complexity is lin-
ear with respect to the number of samples (O(n)) for each
feature, and the space complexity is O(k), where £ is the
number of unique categories. These characteristics make
it well-suited for medium-sized datasets like the one used
in this study. However, the method has limitations: it does
not preserve the semantic relationship between categories,
and because integer encodings may imply order, it can
introduce bias in models sensitive to ordinal relationships.
Fortunately, tree-based models like Random Forests are

not affected by this potential ordinal bias, making the ap-
proach suitable for the modeling technique chosen in this
research.

This encoding strategy was selected for several reasons.
First, it aligns with methods used in previous solar flare
prediction studies, supporting consistency and compara-
bility. Second, it incurs minimal memory overhead, which
is beneficial for cloud-based environments where resource
usage is a consideration. Finally, it is inherently compat-
ible with decision tree-based algorithms, which form the
core of the modeling approach in this work. Overall, this
preprocessing step strikes a balance between efficiency,
interpretability, and compatibility, forming a solid founda-
tion for the subsequent machine-learning pipeline.

Table 1 the result of data processing

Modified Zurich class Largest spot size Spot distribution
0 1 4 2
1 2 4 2
2 1 4 2
3 2 4 2
4 2 0 2

3.2 Random Forest

This study employs the UCI Solar Flare Dataset to devel-
op a predictive model for solar flare activity. It includes
both categorical (e.g., Zurich class, spot distribution) and
numerical features (e.g., sunspot area, flare count). Label
encoding and one-hot encoding were applied to handle
categorical data. Low-variance and highly correlated fea-
tures were removed to improve generalization. Key fea-
tures like magnetic complexity and largest spot size were
retained. The dataset was split using an 80:20 stratified
ratio, and numerical features were standardized to ensure
consistent scaling for model training and evaluation.

The core prediction model is a Random Forest Regressor,
The Random Forest algorithm employed in this study is
based on the ensemble learning principles introduced by
Breiman. It operates by constructing multiple decision
trees and aggregating their results to improve accuracy
and reduce overfitting [7,8,9]. Features selection played a
key role in preparing the data. Redundant variables were
removed based on correlation and variance analysis fol-
lowing best practices described by Liu and Motoda [10],
who emphasize the importance of minimizing irrelevant
features to optimize generalization which constructs an
ensemble of regression trees. For each tree 7° in the

forest (b=1), a bootstrap sample D” is drawn with replace-

ment from the original dataset. Each tree grows via recur-
sive binary partitioning, selecting at each node the feature
j and threshold t that minimizes the sum of squared devi-
ations within the resulting left and right partitions. This is
defined by the loss function:

L= Y G-y )P+ Y -y’ (D)

xel(j,t) XeR(j,1)
where Land y, bar y,are the mean target values in the

respective partitions. Each tree stops growing when a
maximum depth d,, =15 is reached or when leaf nodes

contain fewer than five samples. Final predictions are
made by averaging the output of all trees:

ﬂﬂ=§gn@) )

To maximize model accuracy, hyperparameter tuning was
conducted via 5-fold cross-validation using a grid search
strategy. Parameters evaluated included the number of
trees (n_estimators: [100, 200, 300]), maximum tree depth
(max_depth: [5, 10, 15]), the minimum number of samples
required to split a node (min_samples_split: [2, 5, 10]),
and the maximum number of features considered at each
split (max_features: [,sqrt‘, ,log2°]). The optimal config-
uration—200 estimators, max depth of 10, minimum split
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mean squared error (Table 2):

Table 2 Parameters evaluated included the number of trees

Parameter Search Space Optimal Value
n_estimators [100,200,300] 200
max_depth [5,10,15] 10
nin_sample_split [2,5,10] 5
max_feature [‘sqrt’, ‘log2’] ‘sqrt’
13,1 N laying the foundation for future deployment in real-time
MSE, = E;WZI(% -9 (3)  space weather monitoring systems. Overall, leveraging

The final model was assessed using two primary regres-
sion metrics: Mean Squared Error (MSE) and Mean Abso-
lute Error (MAE), defined respectively as:

MSE = %zm % 4)

1 & .
MAE=ﬁZtyi—y|i Q)
i=1

To deepen interpretation, secondary analyses were con-
ducted, including permutation-based feature importance to
quantify the influence of each variable, partial dependence
plots to examine interactions between key predictors and
outputs, and residual distribution analysis to evaluate
model fit. Together, these steps ensure that the model is
both accurate and interpretable, laying the groundwork for
future operational deployment in solar flare forecasting.

3.3 Cloud-Based Implementation

To ensure scalability, reproducibility, and efficient re-
source utilization, the machine learning pipeline was de-
ployed in a cloud-based computing environment. Cloud
infrastructure offers dynamic allocation of computing
power, storage, and memory, which is essential for han-
dling large datasets and computationally intensive tasks
such as hyperparameter tuning and model training. In
this study, services such as virtual machine instances and
google colab were utilized to streamline the workflow.
Data preprocessing, model training, and evaluation were
conducted in the cloud, enabling parallelized operations
and reducing local hardware dependency. The use of
cloud storage also allows persistent data access and se-
cure backup of intermediate results and trained models.
Moreover, cloud environments support reproducibility
by allowing the configuration of specific runtime envi-
ronments using containers or virtual environments. This
ensures that experiments can be reliably replicated across
different sessions or by different users. Additionally, cloud
platforms facilitate integration with APIs and dashboards,

cloud computing not only accelerated the research process
but also demonstrated the practical feasibility of scaling
machine learning-based solar flare prediction to produc-
tion-ready systems.

4. Experimental Setup and Result

4.1 Experimental Setup

To support the development, training, and evaluation
of our solar flare prediction model, we utilized a cloud-
based computing environment powered by Jetstream2, an
NSF-funded academic cloud infrastructure. Specifically,
an instance provides 1 CPU, 3 GB of RAM, and 20 GB
of disk space. The operating environment was based on
Linux compatible with Python development and machine
learning libraries. This setup ensured portability, efficient
resource monitoring, and access to persistent compute re-
sources independent of local hardware limitations.

The machine learning pipeline was implemented in Py-
thon 3.10 and utilized core scientific libraries including
pandas, numpy, and scikit-learn. Data visualization and
interpretability tools were implemented using matplotlib,
seaborn, and sklearn. inspection for plotting residuals and
partial dependence. The UCI Solar Flare Dataset (ID: 89)
served as the data source and was loaded into the envi-
ronment via direct upload. Categorical variables such as
Zurich class, spot distribution, and largest spot size were
preprocessed using label and one-hot encoding, while
numerical features were standardized (mean = 0, standard
deviation = 1). Features with low variance (¢ < 0.1) and
high correlation (Pearson’s r > 0.8) were excluded to im-
prove generalization and avoid redundancy.

Model training was conducted using a Random Forest
Regressor, selected for its robustness and ability to handle
mixed data types. Hyperparameter tuning was performed
using GridSearchCV with 5-fold cross-validation. The
search space included: n_estimators [100, 200, 300], max__
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depth [5, 10, 15], min_samples_split [2, 5, 10], and max_
features [‘sqrt’, ‘log2’]. The optimal model configuration
(200 trees, max depth = 10, min split = 5, max features
= ,sqrt) was chosen based on minimum cross-validation
error.

Model evaluation was conducted using MSE and MAE,
supported by visualization of prediction accuracy and
feature importance. The cloud environment facilitated re-
producibility through consistent VM provisioning, while
resource usage (CPU, RAM, and disk) was continuously
monitored via Jetstream2‘s dashboard. This setup demon-
strated the practicality and efficiency of cloud-based infra-
structure in supporting scalable scientific machine-learn-

ing workflows for space weather forecasting.

4.2 Regression Analysis

The objective of the regression task was to predict the to-
tal flare count as a continuous variable. Two models were
trained and tested: Poisson Regression and Random Forest
Regressor.

4.2.1 Random Forest Regression Results

The Random Forest Regressor was trained with 100 trees
(n_estimators = 100) and a maximum depth of 20. The
model was evaluated on the test set, achieving the follow-
ing performance.

Table 3. Result of MSE and MAE

MSE

0.2536571185627617

MAE

0.1805416829811566

Table 3 summarizes the model’s performance using two
common metrics: MSE and MAE. The MAE of 0.1805
indicates that the model’s predictions deviate from actual
flare counts by less than 0.2 on average, which is accept-
able given the observed range of values. The MSE value
of 0.2537 further reflects the model’s ability to generalize

without extreme errors.

Figure 1 and Figure 2 (left panel) display scatter plots
comparing actual vs. predicted solar flare counts. Pre-
dictions for higher flare counts are often underpredicted,
highlighting the model’s difficulty in capturing rare, large
flare events.

Actual vs Predicted Solar Flare Counts
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Fig.1. Actual vs Predicted Solar Flare Counts graph (Picture credit: Original)
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Fig.2 Random Forest regression and Top 8 Important Feature (Picture credit: Original)

4.2.2 Regression Feature Importance

Figure 2 (right) displays the top 8 features ranked by im-

portance in the Random Forest Regressor. The top three
contributing features were (Table 4):

Table 4. Top 3 features

Modified Zurich class 0.25
Largest spot size 0.21
Spot distribution 0.16

Other significant features included spot distribution
(~0.16), flare activity (~0.10), and the area of the largest
spot (~0.08). This confirms the physical relevance of sun-
spot characteristics in flare prediction.

4.3 Classification Analysis

To assess the model’s ability to detect whether any flare
will occur, the target variable was binarized (flare count >
0 — 1, else 0). The dataset showed a significant class im-
balance (Table 5):

Table 5 Instance of Flare

No Flare instance

84.43% (233 out of 278)

Flare instances

15.57% (45 out of 278)

4.3.1 Random Forest Classifier Results

Using a Random Forest Classifier with 100 estimators and

class balancing, the model achieved the following (Table
6):

Table 6 Result of Accuracy, Precision, Recall and F1-score:

Model Accuracy Precision Recall F1-score
Random Forest 80.58% 0.85 0.94 0.89
Logistic Regression 72.40% 0.70 0.81 0.75
SVM(RBF Kernal) 76.30% 0.74 0.86 0.79

Compared to Logistic Regression, the Random Forest
model shows an 8.18% increase in accuracy, a 15-point
increase in precision, a 13-point increase in recall, and a

14-point increase in Fl-score. These improvements sug-
gest that Random Forest is better at identifying true posi-
tives while maintaining a low false positive rate, possibly
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due to its ensemble structure and robustness to overfitting.
Similarly, compared to the SVM model, Random Forest
still outperforms by 4.28% in accuracy, 11 points in pre-
cision, 8 points in recall, and 10 points in F1-score. The
possible reasons include Random Forest’s ability to handle
feature interactions and its effectiveness on imbalanced
datasets through class weighting. These results demon-
strate that Random Forest is the most effective among the
three models for this classification task.

4.3.2 Precision-Recall and Feature Importance

Although modest, the model outperforms chance-level
predictions.The feature importance analysis reveals that
the Modified Zurich class contributes the most to the
model’s predictions (importance score: 0.25). This aligns

with its role in characterizing the complexity and size of
sunspot groups, which are closely linked to solar flare
generation. The largest spot size (0.21) follows, reflecting
the tendency for larger sunspots to store more magnetic
energy, increasing the likelihood of flare events (Figure
3). Spot distribution (0.16) and evolution (0.12) also play
meaningful roles, as rapidly evolving or complex config-
urations often indicate unstable magnetic fields. Although
lower in importance (0.09), the activity feature still pro-
vides supplementary context on the recent behavior of the
active region. These findings are consistent with domain
knowledge in solar physics, highlighting the relevance of
sunspot morphology and magnetic dynamics in flare pre-
diction.

Top 10 Important Features for Classification
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Fig. 3 Top 10 Important Feature for Classification (Picture credit : Original )

4.4 Frequency Distribution

Figure 4 shows flare count frequency across feature cate-
gories. Class 1 (flare count = 1) had the highest frequency
with contributions from multiple features including area

of largest spot, evolution, and Zurich class. Higher flare
count classes (4, 5) were rare and feature-limited, support-
ing the challenge faced by the model in capturing these
events.
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Fig. 4 Feature Frequency Distribution Across Categories for Solar Flare Prediction (Picture
credit : Original )
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Overall, the results suggest that while Random Forests
can effectively model low-count flares and general activity
levels, they struggle with accurately predicting high-mag-
nitude or rare flare occurrences without further balancing
or temporal modeling.

5. Conclusion

This study presented a machine learning—based approach
to solar flare prediction using a Random Forest model on
the UCI Solar Flare Dataset. By leveraging cloud-based
infrastructure, we achieved scalable training and efficient
experimentation, enabling real-time analysis of solar
activity. The regression model demonstrated moderate
predictive power, with a mean squared error of 0.253657
and a mean absolute error of 0.180541. The classification
analysis revealed an overall accuracy of 80.58%. Howev-
er, the recall for flare events was only 13%, highlighting
the difficulty of predicting rare but impactful solar events
in imbalanced datasets. Key features like the modified
Zurich class, spot size, and distribution consistently influ-
enced both classification and regression predictions, sup-
porting their physical significance in solar flare behavior.

While Random Forests offer interpretability and fast infer-
ence, their performance on rare high-count flares remains
a challenge. Future work should explore advanced archi-
tectures such as recurrent neural networks (e.g., LSTM)
or physics-informed neural networks (PINNs), as well as
real-time streaming from solar observatories like NASA‘s
SDO. Data augmentation techniques and anomaly detec-
tion may also improve performance on the minority class.
This work contributes to the growing field of Al-powered
space weather forecasting and demonstrates how ensem-
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ble learning and cloud computing can support early-warn-
ing systems for solar flare events.
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