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Abstract:

Initially, conventional convolutional neural networks
were the primary approach for object detection, a core
computer vision task. However, the emergence of
Transformer architecture has significantly enhanced
detection accuracy and generalization capabilities, playing
a pivotal role in advancing intelligent systems across
various domains. Recently, the integration of CNN and
Transformer architectures has emerged as a key area of
investigation for detecting objects. By combining the
complementary advantages of CNNs and Transformers,
these hybrid architectures enhance accuracy in various
object recognition scenarios. This study commences with
a concise overview of CNNs and Transformers, critically
analyzing their respective advantages and limitations.
Subsequently, we conduct a systematic examination of
state-of-the-art hybrid architectures and their optimization
strategies. Finally, a comprehensive comparison and
summary are presented in tabular form to facilitate clear
performance evaluation. These approaches are designed
to harness CNNs’ superiority in local feature extraction
while leveraging Transformers’ capacity for global context
modeling. At the end of the paper, the prospects of hybrid
models in object detection and the insights to guide further
research have been discussed.

Keywords: CNN-Transformer Hybrid Model; Serial Ar-
chitecture Fusion Approach; Parallel Architecture Fusion
Method

1. Introduction

approaches, however, rely on handcrafted features
and suffer from limited generalization capability and

As a critical computer vision task, object recogni-
tion excels at accurately pinpointing and classifying
items in visual data, playing a vital role in fields like
self-driving vehicles, healthcare imaging, intelligent
monitoring systems, and other domains. Traditional

poor adaptability to complex scenarios.

The advent of Transformer architecture has intro-
duced powerful global feature modeling capabilities,
effectively capturing long-range dependencies in
images and offering novel solutions for multi-scale
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object detection challenges. This study focuses on the
promising applications of hybrid CNN-Transformer mod-
els in object detection, while providing insights for future
research directions.

We begin with a concise introduction to CNN and Trans-
former architecture, including their underlying princi-
ples, strengths, and limitations. Subsequently, we present
the fundamental concepts and design methodologies of
CNN-Transformer hybrid models, followed by a sys-
tematic analysis and categorization of prevalent hybrid
approaches at different architectural levels. Finally, we
discuss the potential of CNN-Transformer hybrid models
in advancing object detection performance and outline
prospective research opportunities.

2. Comprehensive Analysis of Deep
Learning Architectures: From CNNs to
Transformers and Hybrid Paradigms

2.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a specialized
class of deep learning models designed for processing
grid-structured data, such as images and speech. Inspired
by biological vision mechanisms, CNNs employ three
key principles: local receptive fields, weight sharing, and
hierarchical feature extraction. CNNs are fundamentally
built using three key elements: feature-extracting convo-
lutions, dimensionality-reducing pooling operations, and
decision-making dense layers.At the heart of CNNs, con-
volution operations employ localized filters with shared
parameters to effectively capture spatial patterns in input
data. The pooling layer reduces feature map dimension-
ality via down sampling while preserving critical features
and enhancing computational efficiency. Finally, the fully
connected layer, positioned at the network‘s terminal
stage, flattens the multi-dimensional features extracted by
preceding layers into a one-dimensional vector and maps
them to the output space through learned weights.

The unique architecture of CNNs, characterized by local-
ized receptive fields and multi-level feature learning, has
proven highly effective for visual recognition challenges
including image categorization and instance localization.
Pioneering architectures like AlexNet [1] and ResNet
[2] have driven significant technological breakthroughs.
However, their heavy reliance on large-scale datasets and
substantial computational resources remains a persistent
challenge.

2.2 Transformer

Introduced in 2017 by Vaswani et al., the Transformer

model employs self-attention mechanisms as its core
computational framework within deep learning systems
[3]. Initially developed for NLP sequence tasks like trans-
lation, this architecture overcame RNN limitations by
implementing fully parallel processing across entire se-
quences.

The core components of the Transformer include the
encoder, decoder, and embedding layer. The embedding
layer converts discrete tokens into dense vector represen-
tations, while the encoder models long-range contextual
relationships. The decoder then sequentially produces out-
puts by leveraging masked self-attention and encoder-de-
coder attention mechanisms.

The Transformer’s self-attention architecture and parallel
processing capabilities have established it as a ground-
breaking advancement in artificial intelligence. However,
its high computational resource demands and architectural
complexity limit its applicability in resource-constrained
scenarios.

2.3 Hybrid CNN-Transformer Model

A notable trend in computer vision research involves
integrating convolutional neural networks with trans-
former-based models to leverage their complementary
strengths. By ingeniously integrating the strengths of both
frameworks, these hybrid models effectively mitigate the
limitations of single-model approaches, substantially en-
hancing feature extraction capabilities and global model-
ing performance.

Within hybrid architectures, the CNN component plays
two critical roles: first, leveraging its powerful local fea-
ture extraction ability to provide low-level visual features
for the model; second, enhancing generalization through
its inherent inductive bias, particularly when processing
high-resolution images. The stage-wise design of CNN
modules significantly reduces computational overhead and
improves overall efficiency. Meanwhile, the Transform-
er component focuses on establishing global contextual
relationships, capturing long-range dependencies among
different image regions via self-attention mechanisms.
This innovative architectural fusion offers dual advantag-
es: first, it achieves complementary integration of local
detail features and global semantic information, greatly
improving image representation; second, through well-de-
signed structures, it significantly reduces computational
complexity while maintaining performance. Currently,
such hybrid models have demonstrated outstanding results
across various vision tasks and achieved remarkable suc-
cess in real-world applications.



3. Integration Approaches of CNN and
Transformer

3.1 Serial Architecture Fusion Approach

Serial Fusion refers to the sequential connection of CNN
and Transformer modules to form a staged feature pro-
cessing pipeline. The architecture’s fundamental principle
involves specialized functional partitioning: convolutional
networks initially capture localized patterns like basic
shapes and surface details through spatial filters, while
attention-based modules subsequently model broader con-
textual relationships across the entire input space. This pa-
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per systematically compares and summarizes the models,
with the results presented in Table 1.

3.1.1 DETR (Detection Transformer)

Developed by Carion and colleagues, the DETR frame-
work integrates CNN-based feature extraction with trans-
former-driven sequence analysis in a unified pipeline [4].
The Transformer progressively extracts global contextual
information through its encoder-decoder mechanism to
generate corresponding object detection anchors. This
model achieves superior performance and accuracy in
object detection tasks. Figure 1 illustrates the architectural
schematic of the DETR (Detection Transformer) model.

Transformer Predicted
Encoder- bounding
Decoder box

Fig. 1 Structure of DETR model.

3.1.2 Vision Transformer-Faster R-CNN

VIiT-FRCNN is a Transformer-based object detection mod-
el whose core innovation lies in replacing traditional CNN
backbones with a Vision Transformer (ViT) as its feature
extraction network[5,6]. The model first processes input
images through ViT’s patch encoding mechanism, lever-
aging self-attention to capture global contextual features.
The model’s output representations undergo spatial re-
shaping to align with detection requirements, after which
they are processed through a cascaded pipeline com-
prising a region proposal generator and a final detection
module. Through end-to-end training, ViT-FRCNN jointly
optimizes both the RPN and detection modules, demon-
strating superior performance on COCO dataset while ex-
hibiting stronger out-of-domain generalization capabilities
and improved large object detection [7]. The key innova-
tion of this approach is its direct utilization of ViT’s patch
outputs as detection feature maps, thereby eliminating the
need for complex multi-scale feature fusion designs com-
monly employed in conventional detectors.

3.1.3 Convolution-Transformer Network

ConTNet is a hybrid architecture that synergistically mod-
els local and global features through alternating stacks of
convolutional layers and standard Transformer encoders
(STE) [8]. The model initially employs convolutional lay-
ers for image down sampling and local feature extraction,
followed by serial connections of Transformer encoders to
capture long-range dependencies. The final classification
or detection output is generated via global pooling and
fully connected layers.

The key advantage of ConTNet lies in its dual capabili-
ty: preserving the inductive biases of convolution (e.g.,
translation equivariance) while enhancing global context
awareness through Transformer modules. On ImageNet
classification tasks , ConTNet achieves superior accuracy
with lower computational complexity compared to pure
Transformer-based models [9]. Notably, when deployed as
a backbone for downstream tasks, it significantly outper-
forms ResNet , particularly in dense prediction tasks such
as segmentation, owing to its expanded receptive field
enabled by the STE modules.
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Table 1. Comparison of Serial-Fusion Hybrid CNN-Transformer Architectures

Evaluation Index

Model Parameter Count(M) | Computation

Strength Limitation Ref

DETR 41.0 86 Flops(G)

COCO)

AP 2%(@

An end-to-end detection .
. The convergence rate is
framework that obviates the .
. ¢ f relatively slow, and the
requirement for non-max- ) .
. d . detection efficacy for| [4,7]
imum suppression (NMS) . .

small objects remains

ost-processing, thereb .
P p & Y unsatisfactory.

simplifying the pipeline.

VIiT-FRCNN - -
COCO)

AP 36.6%(@

With minimal fine-tuning,

Th del d d
the model achieves rapid ¢ model demands

large-scale pre-training
data and exhibits high
computational overhead,

adaptation to object detec-
tion tasks while maintaining [5,7]
robust performance on out-
of-domain (OOD) image

datasets.

posing significant re-
source requirements.

217.2
Flops(G)

ConTNet 27.0

COCO)

AP 37.9%(@

. This architectural de-
By employing an alternat-| . . .
. ; sign potentially incurs
ing stacking strategy, the

framework enables stable non-negligible com-

putational costs while
exhibiting suboptimal
generalization perfor-

training convergence with-
out sophisticated data aug-
mentation techniques, while

[7.8]

. . mance when applied to
significantly decreasing limited-scale training

computational demands.
data.

3.2 Parallel Architecture Fusion Method

The essence of parallel architecture lies in decoupling the
conflict between local perception and global modeling
through spatial parallelization and feature fusion. Its core
principle is to preserve the spatial detail advantages of
CNNs while overcoming the sequence length limitation
of Transformers, thereby establishing a new paradigm for
high-resolution image understanding. This paper system-
atically compares and summarizes the models, with the
results presented in Table 2.

3.2.1 Conformer-S Model

The Conformer-S model achieves high performance and

accuracy in object detection through its innovative par-
allel CNN-Transformer hybrid architecture and Feature
Coupling Unit (FCU) [10]. Key innovations involve
bridging localized and holistic representations through
Feature Coupling Units (FCUs), simultaneously improv-
ing model stability and computational performance. Fu-
ture directions involve extension to multimodal tasks or
integration with compression techniques for further opti-
mization. In summary, Conformer-S represents the cutting
edge of CNN-Transformer hybrid models, establishing
a new benchmark in object detection research. Figure 2
illustrates the architecture of the Conformer (Convolu-
tion-augmented Transformer) model.

]

i Transformer Transformer p.
Projection > > —> Classifier
Block Block
|FCU|
— Conv Block > Conv Block —> Classifier

Fig. 2 Structure of Conformer model.
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3.2.2 TransMobileNet-Transformer

The TransFusionNet framework, introduced by Wang et
al., utilizes a dual-path design to hierarchically capture
and integrate holistic image features via encoder-decoder
networks, enabling accurate delineation of hepatic lesions
and vascular structures [11]. The innovation lies in its
simultaneous incorporation of both a Transformer-based
global feature extraction encoder and a CNN-based local
residual network encoder. These complementary compo-
nents collectively capture semantic and spatial features
from CT images. The model further introduces specialized
modules for fusing Transformer and CNN features, along
with an edge extraction module, effectively leveraging
CNN‘s advantages in local feature extraction and Trans-
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former*s strengths in global context modeling. This design
significantly enhances both accuracy and robustness in
medical image segmentation.

3.2.3 MobileNet-Transformer

Mobile-Former jointly developed by Microsoft and
the Chinese Academy of Sciences in 2021, represents a
lightweight hybrid architecture that parallelly integrates
MobileNet with Transformer [12]. A pivotal advance-
ment lies in its Bidirectional Cross-Attention Bridge,
enabling seamless integration of convolutional networks’
region-specific feature learning with Transformers’ long-
range dependency modeling. This architecture achieves
an optimal balance between computational efficiency and
strong representational power [13].

Table 2. Comparison of Parallel-Fusion Hybrid CNN-Transformer Architectures

Evaluation Index
P t C ta-
Model arameter orr.lpu a Strength Limitation Ref
Count(M) tion
The proposed archi-
The proposed feature coupling prop !
. tecture demonstrates
module (FCM) effectively fuses L. .
localized feature patterns with ho- non-trivial computation-
Conform- 162 AP 46.6%(@ . P . al complexity, which
89 listic contextual representations, . [7,10]
er-S Flops(G) COCO) . . | consequently imposes
thereby strengthening feature dis- . . .
T considerable difficulties
criminability through cross-scale | . ..
. . in model training con-
interaction.
vergence.
Latency(ms)
114.9 (On the The boundary target
hardware plat- | The model achieves high-precision | segmentation exhibits
TransFu- 796 form comprising | segmentation and multi-task col- [inadequate stability, [11,14]
sionNet ’ an NVIDIA Titan |laboration, and enables embedded | elevated inter-module ’
V100 GPU and |deployment after quantization. coupling, and intricate
Intel Core i7 parameter optimization.
CPU)
Caution should be exer-
The approach significantly pushes | cised when evaluating
Mobile-For- 8.4 9.8 AP 38.0%(@ |the accuracy limits of efficient ar- |in scenarios involving (7.12]
mer ' Madds(G) COCO) chitectures while operating within | extreme lightweight| =’
strict computational constraints. requirements or limited
data availability.

4. Discussion and Future work

The ongoing advancement of sophisticated Al systems is
accelerating progress in machine intelligence, delivering
groundbreaking results in both linguistic understanding
and visual interpretation - heralding a fundamental shift
in how society operates and interacts. The deep integra-

tion of hybrid models with visual foundation models has
emerged as a critical research challenge to be addressed.

First, in certain specialized image processing scenarios,
researchers frequently encounter challenges including
insufficient data samples, labor-intensive annotation pro-
cesses, and complex semantic interpretation. Looking
ahead, we can leverage the inherent advantages of foun-
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dation models to facilitate image data generation, annota-
tion, and interpretation. Subsequently, through integration
with hybrid models, we can conduct in-depth analysis of
image data to extract multi-dimensional features, thereby
establishing a robust foundation for subsequent task eval-
uation.

Second, multimodal learning is emerging as a pivotal
trend for future development. The development of novel
hybrid foundation models(e.g., Swin-Transformer) that
combine CNN and Transformer architectures will enable
the processing of multimodal data (encompassing text,
images, audio, etc.), achieving cross-modal interaction
and uncovering the correlations and complementarity be-
tween different modalities [15]. Such hybrid models are
expected to provide substantial momentum for the contin-
ued research and widespread adoption of visual founda-
tion models.
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