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Abstract:

In recent years, significant advancements have been made
in the field of deep learning-driven image generation
technology. Initially, the technology was characterized by
the generation of low-quality image samples. However, it
has since evolved to produce highly realistic and diverse
images, which have found widespread applications in
domains such as computer vision, art creation, medical
imaging, and virtual reality. In this paper, we systematically
study the current mainstream deep generative models,
including Generative Adversarial Networks (GAN),
Variational Auto-Encoders (VAE), and Diffusion Models.
We focus on their core principles, representative results,
performance characteristics, and application scenarios.
We also analyze the strengths and shortcomings of
the various models in depth. The paper undertakes a
systematic comparison and summarization of the current
state of research in the field, identifying the predominant
challenges and anticipating future developments. The
objective is to furnish researchers in the domain of image
generation with a coherent technological trajectory and a
comprehensive theoretical framework.

Keywords: Deep Learning; Image Generation; Genera-
tive Adversarial Network.

1.Introduction

control and computational efficiency [4]; Rombach

The field has undergone three paradigm shifts with
the rise of deep generative modeling, from break-
throughs in adversarial training in generative adver-
sarial networks (GANSs) to hidden-variable probabi-
listic modeling in variational autoencoders (VAEs) to
diffusion model asymptotic noise mechanisms [1-3]

Domestic teams have achieved remarkable results
in efficiency optimization, such as Zhang et al.’s
lightweight GAN to achieve real-time generation on
mobile; international frontiers focus on multimodal

et al.’s Stable Diffusion achieves a computational
breakthrough through potential space compres-
sion[5], however, Ho et al.’s DDPM reveals that
diffusion models have a bottlenecks in sampling effi-
ciency at the hundred-step level[6].

Despite technological innovation, current methods
face core conflicts, such as quality vs. efficiency, con-
trollability vs. generalizability, and cost vs. demand.
This paper systematically reviews the evolution of
deep learning image generation technology, focus-
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ing on the principles and technological breakthroughs of
Generative Adversarial Networks (GANs), Variational
Auto-Encoders (VAEs), and Diffusion Models. It quanti-
tatively compares their performance boundaries in terms
of generation quality, sampling efficiency, and conditional
control ability. Ultimately, it puts forward a fusion archi-
tecture and ethical protection solution to resolve the con-
flicts between efficiency and controllability.

2.Core Generative Modeling Methodology

2.1 Generative Adversarial Networks

GANSs, proposed in 2014 by Goodfellow et al., are a
landmark work in image generation. They center on an
adversarial training mechanism. The framework contains
two deep neural networks. As shown in Fig. 1: Generator:
Input hidden random noise vectors z~ p,(z) and use a
transposed convolutional neural network for stepwise up-
sampling to generate fake samples G(z) .Discriminator: As
a binary classifier, it distinguishes whether the input im-

real data x
Sample

Hidden O G

random @ Generator G(Z)
ness (neural Sample
vector

O network)

age comes from the real data distribution x ~ p, (x) or the

generated fake samples D(x) . It then outputs a probability
value and calculates the loss function, which guides the
optimization of the two networks. The optimization of the
objective function through the minimax game is shown
in equation (1). In the ideal case, when training reaches
Nash equilibrium and the generating distribution is close

to the real onep, (x) = p,,,(x) .The discriminator output is

D(G(z)) — 0.5 when the generated and real samples reach
equilibrium and become indistinguishable

min,max V' (D,G)=E,, . [logDW)]+E,, . [log(1-D(G(2)))]
Where the generator minimization objective is min,, the
discriminator maximization objective is max, , the value
function is V' (D,G), the real data sample and distribution
is E the discriminator output is D(z), the generator

X~ Pyya (X)

processing is G(z) , and the loss term is log(1— D(G(z)))

real

O =
. function

fake

Fig. 1 GANs basic flow chart

GANSs are driving technological progress. DCGAN im-
proved quality by adding convolutional neural networks,
stepwise convolution, batch normalization, and transposed
convolutional up sampling[7]. However, it also suffers
from pattern collapse, which can exceed 30%. This causes
a decrease in sample diversity. In the CLEVR multi-object
scene dataset, DCGAN often leads to an overpowered
discriminator and a decrease in the generator gradient par-
adigm, resulting in a limited number of generated samples
and exacerbating mode collapse. Major existing solutions
usually increase the training time to reduce the crash rate.
The StyleGAN family uses mapping networks and AdalN
to inject style vectors, with pixel-level noise to enhance
detail performance. styleGAN2 and styleGAN3 build on
this foundation to improve issues like artifacts and mo-
tion blur[8]. However, this family of models has a high
training cost: at 1024x1024 resolution, a complete train-
ing process typically requires 256 V100 GPUs running for
about 32 days. Under current hardware conditions, the
model demands significant video memory usage, training
time, and computational resources, making large-scale
feasibility difficult to meet. GANs models generate sam-
ples with high visual fidelity and fast inference speed, but

face limitations like unstable training, pattern collapse,
lack of probability density estimation, and hyper param-
eter sensitivity. Cutting-edge solutions include spectral
normalization, global dependency modeling by ViTGAN,
and latent space decoupling by InfoGAN and StyleSpace.

2.2 Variational Autoencoders

Kingma and Welling’s 2013 proposal of the variational
auto-encoder (VAE) is a generative model based on prob-
abilistic graphical models and variational inference. Fig. 2
shows the core architecture, which consists of an encoder
and a decoder. The encoder maps input data X to a proba-
bility distribution in the latent space, learns to generate the

mean (p,) and variance (6;) of the key data, and intro-

duces noise to the variance. The encoder outputs a random
variable whose intensity is close to the standard normal
distribution as 1. The mean plus the square root of the
variance multiplied by the noise yields the variable Z* in
the latent space. Subsequent access to the decoder samples
from the latent distribution (z ~ g,(z[x)). It reconstructs
data X’ similar to the original input data after learning the

output distribution (p,(x|z)).The optimization objective



is to minimize the negative value of the evidence lower
bound, as shown in equation (2).

Lyno =E, i [log p,(x|2)] - Dy, (4,2 0) || p(2)) X
should be close to X to preserve the data’s fidelity. KL
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constraints on potential space regularization promote a
standard normal distribution, gradually weakening noise
influence. This regularizes the potential space, improving
the model’s performance and its ability to generalize.

variance

probabilistic
encoder

[Caverages

As close as possible.

>{ noises )Intensity close to—{ 1

Add something.

probability

. decoder

Fig. 2 VAE Core Architecture Flowchart

In the subsequent model evolution, f-VAE enhances the
decoupling ability of potential features by introducing
the coefficient S[8]. This enhancement achieves a success
rate of ove-r 75% in feature editing tasks. However, the
model’s generated results are ambiguous, e.g., its struc-
tural similarity index (SSIM) is usually lower than 0.65 at
a 512x512 resolution. This is far from the image quality
standard required for practical applications. Additionally,
current methods struggle to meet industrial-grade require-
ments for SSIM and KL dispersion when adjusting the S
parameter. VQ-VAE and VQ-VAE2 discretize the contin-
uous latent space through vector quantization. VQ-VAE2
uses a hierarchical structure to enhance generation reso-
lution[9]. Training stability can be enhanced with code-
books of size K=512, but quantization loss is introduced.
Using larger codebook sizes increases the risk of pattern
collapse. VAEs have stable training, a spatial structure,
and estimable data likelihood, but blurred images, low-
er sampling quality, and bias are challenges. Solutions
include VQ discretization, hierarchical architecture, and
adversarial training.

2.3 Diffusion Models

Diffusion modeling is the mainstream technique in current
image generation (2023-2025), inspired by nonequilibri-
um thermodynamics. It learns data distribution through
gradual noise addition and denoising. Fig. 3 shows the

process starts with the raw data x on the left. Real data

coresponds to model inputs. In the forward process, the
data is progressively noised in t steps: Gaussian noise
is introduced at each step according to a preset variance
scheduling parameter. As the number of steps increas-
es, the percentage of noise gradually increases until it is

transformed into pure noise with an approximate standard
normal distribution at step x¢. As shown in equation (3),
the per-step noise addition constitutes a strict Markov
chain, in which the state of each step depends only on the
result of the previous step.

X =\/1-8x_++/f€ €~ N(O,I)
Where g, €(0,1) denotes a predefined or learnable

variance scheduling parameter and €, denotes standard

Gaussian noise that is independently and identically dis-
tributed, the process constitutes a Markov chain.

The reverse denoising process is presented on the right.
Starting from pure noise, the model (usually with a U-Net
or Transformer backbone) learns to predict the target by
estimating and removing the noise from the currently
noisy data at each step. As the denoising steps progress,
the data gradually regains its true texture and structure.
Eventually, new samples are generated that are consis-
tent with the original data distribution. The figure clearly
distinguishes the inverse processes of noise addition and
denoising through visual symbols indicating arrow direc-
tion and noise intensity change. The figure may be labeled
with time step ¢ throughout, reflecting the dependence of
the two processes on the time variable. The noise schedul-
ing of the forward process and the denoising modeling of
the inverse process both require time steps as key inputs.
The reverse process is defined as shown in equation (4).

pﬂ(xt—l | Xt) = N(Xt—l;p'f}(xt’t)’zﬁ(xt’t))

Maximize the likelihood or minimize the variational low-
er bound (VLB), which is usually simplified by minimiz-
ing the mean square error between the predicted and true
noises, as shown in equation (5).
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where the key parameters are defined as: o, =1-0,,

@, =] ] ; a, denotes the noise retention factor at the time

step , and ¢, denotes the «, cumulative product from

step one to step ¢ .
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Fig.3 Deeper Understanding of Diffusion Models [5]

Diffusion models are the mainstream generative technique
nowadays. DDPM (Denoising Diffusion Probabilistic
Model) is the theoretical foundation of denoising diffusion
probabilistic models. It proposes a denoising architecture
and noise prediction objective function based on U-Net.
Improved DDPM builds on this by optimizing the noise
scheduling strategy and introducing a learnable vari-
ance design. However, DDPM’s Markov chain sampling
mechanism is slower than GAN’s. Generating large-scale
high-quality data may take days or months under the ex-
isting hardware conditions. LDM/Stable Diffusion diffuses
in a low-resolution latent space, enabling consumer-grade
GPUs to generate high-resolution images 96% more ef-
ficiently. This has greatly facilitated the development of
AIGC applications, but also causes a loss of textual detail
expression, leading to a semantic attenuation problem
in text-to-image generation tasks. The generated results
often fail to accurately match the description of the input
text. Diffusion modeling techniques have the advantages
of SOTA generation quality, training stability, and flexible

condition control, but still face challenges such as slower
sampling speed than GAN and high cost of pixel space.
Optimization directions include distillation to accelerate
less-step sampling, hidden space compression to reduce
redundancy, and non-Markovian process to achieve jump
denoising to further unleash the potential in the field of
image generation and content creation.

Table 1 classifies and summarizes image generation
models, including GANs, VAEs, diffusion models, and
frontier hybrid models. GANs like DCGAN inference are
fast, but prone to pattern collapse. StyleGAN2/3 excels at
attribute editing, but costly to train. VAEs have a highly
interpretable S-VAE latent space but generate fuzzy imag-
es. VQ-VAE2 uses discrete modeling, resulting in a loss
of codebook quantization. DDPM is theoretically rigorous
but slow to sample. LDM is efficient but loses text details.
DDPM is theoretically rigorous but slow in sampling.
LDM is computationally efficient but loses text details.
Table 1 lists the advantages and limitations of different
image generation models.

Table 1. Comparison of the main limitations of the model’s core strengths

Model Category | representative model Core Advantages Major limitations
GANs DCGAN Millisecond reasoning speed Mode crashes (crash rate >30%)
StyleGAN2/3 Fine-grained attribute editing | High training cost (1024x1024 requires 256 V100
(PSNR>32dB) days)
Int tability of latent
VAEs B-VAE frerpretabitly of fatemt SPACC! 5 herate blur (SSIM<0.65 @512x512)
(editing success rate >75%)
Discrete latent space modeling L
VQ-VAE2 Codebook tization | PSNR |2dB
Q (codebook size K=512) odebook quantization loss ( 12dB)

4
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Theoretical Ri VLB Opti-
diffusion model |DDPM -eor-e ical Rigor ( P Slow sampling rate (vs GAN: x1000)
mization)
96% i i tational
LDM 0, fhetease I computationa Loss of textual detail (BLEU<0.4)
efficiency (64x64 latent space)

3. Challenges and future directions

Deep learning image generation techniques have evolved.
GANs open a new era of generative Al with excellent
visual fidelity, VAE builds a probabilistic modeling frame-
work to achieve potential spatial controllability, and dif-
fusion models have become the mainstream due to their
training stability and modulation flexibility. Potential dif-
fusion models have driven the industrialization of AIGC
in the fields of art creation and scientific visualization.
These techniques have been widely used in art creation,
visual design, image editing, scientific research, and many
other fields. However, challenges remain, including im-
proving computational efficiency, fine-grained controlla-
bility and interpretability, solving the long-tail problem
and low-sample generation, overcoming high-quality 3D
and video generation, and addressing ethical and security
risks.

Future research will focus on creating more efficient, con-
trollable, and responsible image generation models, deep-
ening the theoretical foundation, and exploring innovative
applications in various fields. The future of deep learning
image generation is not only about generating more real-
istic images, but also about safely, reliably, and creatively
meeting the diverse needs of human society. The ultimate

goal is a breakthrough in pixel-level fidelity and to build
a creative engine for human-aligned values, which will
safely and reliably empower cross-domain innovation.
Table 2 compares the efficiency, controllability, and secu-
rity of GAN, VAE, and diffusion models. GAN training is
unstable, VAE generates fuzzy samples, and the diffusion
model is slow. The study proposes a GAN-diffusion relay
architecture. StyleGAN3 generates the initial composi-
tion, and the diffusion model restores it in fewer steps to
achieve high-quality output in real time while preserving
rhythm. To address the model’s inability to understand
complex commands, ControlNet and semantic decoupling
technology transform abstract concepts into visual units
to promote the transformation of the generation model
from “command execution” to “intent understanding.”
For security risks, blockchain watermarking and trace-
ability technology injects invisible fingerprints or other
identifiable information into the generation stage. Com-
bined with a distributed depository and a mobile second
traceability mechanism, front-end trust management of
design-as-compliance is realized. The table presents mul-
tidimensional comparisons and scenarios in a structured
form, providing a systematic reference for subsequent re-
search..

Table 2.Challenges and solutions to the three models

Challenge Type GAN VAE Diffusion Modeling | Fusion Solutions
Efficiency bottlenecks Training instability Fuz.zy. sar.nples require iterative H?ndred—step sam- GAN-Diffusion Hybrid
optimization pling latency Architecture
- . . . Dependence on tex- | ControlNet + Semantic
Controllability flaws Weak layout control High crypto spatial coupling P .
tual cues Decoupling
Depth falsification vul- Blockchain Watermark-
Security risks P o i Privacy leakage risks Copyright disputes | . .
nerabilities ing Traceability

4.Conclusion

This thesis analyzes the evolution of deep learning
image generation technology over the past ten years,
focusing on potential diffusion models like Stable Dif-
fusion and their industrial applications in art creation
and scientific visualization. It discusses challenges in
efficiency, control, and safety and the technology’s
impact on various fields. By systematically studying
the technology’s development, this work provides

a reference for related research and clarifies the re-
search direction of developing efficient, controllable,
and responsible image generation models. It analyzes
existing problems and paves the way for a creativity
engine aligned with human values and cross-domain
innovation in a safe manner. The thesis encourages
image generation technology to evolve beyond pix-
el-level realism to meet society’s diverse needs. Over-
all, this research is significant in understanding the
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field’s development, overcoming technical challenges,
and expanding industrial applications.
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