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abstract:
This study reviews the progress in the application of deep 
reinforcement learning in the field of path planning and 
control for mobile robots. Traditional methods exhibit 
poor adaptability in complex and dynamic environments, 
struggling to handle static and dynamic obstacles as 
well as environmental uncertainties. Deep reinforcement 
learning enables robots to autonomously interact with the 
environment and learn optimal strategies, significantly 
enhancing the performance of path planning and control. 
The article provides a detailed analysis of the limitations of 
traditional methods, such as high computational complexity, 
susceptibility to local optima, and lack of adaptability. 
It also introduces the advantages of deep reinforcement 
learning algorithms (e.g., DDPG, SAC) and their 
improved variants (e.g., APF-DDPG, AM-LSTM-SAC). 
These algorithms demonstrate excellent experimental 
results in various environments through multi-algorithm 
fusion strategies. The paper further discusses the setup of 
simulation environments, experimental configurations, 
and result analysis, summarizing existing achievements 
and shortcomings while providing an outlook on future 
research directions. This work offers valuable insights for 
the further development of mobile robot technology.
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1. introduction
With the rapid development of artificial intelligence 
and automation technologies, mobile robots are in-
creasingly being applied in various fields such as 
industrial manufacturing, logistics and distribution, 
medical services, and home assistance. In industrial 

manufacturing, mobile robots can undertake tasks 
such as material handling and assembly; in logistics, 
they enable efficient transportation and sorting of 
goods; in medical services, they assist healthcare 
workers in delivering medications and transporting 
equipment; and in home assistance scenarios, they 
perform tasks like cleaning and security patrols. In 
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these applications, path planning and control are core 
technologies that ensure the efficient and safe operation of 
mobile robots. Traditional path planning and control meth-
ods often exhibit poor adaptability and flexibility in com-
plex and dynamic environments. For example, in complex 
factory environments, traditional methods may fail to 
promptly respond to the appearance of dynamic obstacles, 
leading to path planning failures. In logistics warehouses, 
faced with large quantities of goods and frequently chang-
ing layouts, it is challenging to quickly find optimal paths. 
The emergence of deep reinforcement learning offers new 
opportunities to address these issues. By enabling robots 
to autonomously learn optimal strategies through interac-
tion with the environment, deep reinforcement learning 
allows robots to better adapt to complex environments 
and improve path planning and control performance. This 
study provides a systematic review and analysis of the ap-
plication of deep reinforcement learning in path planning 
and control for mobile robots.

2. Challenges in Path Planning and 
Control for Mobile Robots
In real-world scenarios, mobile robots face complex and 
diverse environmental conditions, with obstacles appear-
ing in various forms. Static obstacles, such as buildings 
and furniture, and dynamic obstacles, such as pedestrians 
and vehicles, collectively create a complex obstacle en-
vironment. The distribution of these obstacles in space is 
irregular, and their motion states are highly random and 
uncertain, significantly increasing the difficulty of path 
planning. Additionally, there are numerous challenges 
in acquiring and processing environmental information. 
Sensors often produce measurement errors, and data noise 
is unavoidable. These factors can lead to deviations in the 
robot’s perception of its surroundings, adversely affecting 
path planning and control decisions, thereby increasing 
the risks and challenges during task execution.
Traditional path planning methods, such as the classic 
A* algorithm and Dijkstra algorithm, exhibit significant 
limitations in complex environments [1,2]. Their compu-
tational complexity increases sharply with environmental 
complexity, requiring substantial computational resourc-
es and time to find feasible paths in large-scale maps or 
environments with numerous complex obstacles. More 
critically, these algorithms are prone to falling into local 
optima, making it difficult to find globally optimal paths, 
and often resulting in planning outcomes that fail to meet 
practical requirements. Rule-based control methods, due 
to their inherent rigidity and limitations, struggle to cope 
with dynamic environmental changes. They lack the abil-

ity to autonomously adjust strategies based on real-time 
environmental changes, making them ineffective in han-
dling situations such as the sudden appearance of obsta-
cles or abrupt changes in environmental layouts. In com-
plex and dynamic real-world scenarios, these traditional 
methods fall short of meeting the application requirements 
of mobile robots, severely limiting their performance and 
application scope.

3. application of Deep Reinforcement 
Learning in Path Planning for Mobile 
Robots

3.1 improvements Based on the DDPg algo-
rithm

3.1.1 aPF-DDPg algorithm

In mobile robot collision avoidance planning tasks, the 
traditional DDPG algorithm suffers from slow conver-
gence, significantly impacting its application effective-
ness. Researchers such as Wang Xiaoning[3] innovatively 
proposed the APF-DDPG algorithm, providing a new 
approach to address this issue. This algorithm ingeniously 
incorporates the Artificial Potential Field (APF) method 
to adjust the robot’s angular velocity. In the early stages 
of training, this improvement effectively guides the robot 
to reach the target point more quickly while enabling it 
to master collision avoidance strategies faster. Through 
extensive experiments conducted in a Gazebo simulator 
based on ROS, which includes environments with no 
obstacles, static obstacles, and dynamic obstacles, the 
results show that the APF-DDPG algorithm significantly 
improves convergence speed and achieves higher average 
rewards compared to the traditional DDPG algorithm in 
various scenarios. This allows the robot to complete col-
lision avoidance planning tasks more efficiently, demon-
strating the algorithm’s effectiveness and superiority.
3.1.2 aPF-SPER-DDPg algorithm

To further address the bottlenecks of low sample utili-
zation and path redundancy in the DDPG algorithm, the 
APF-SPER-DDPG[3] algorithm was developed. The core 
innovation of this algorithm lies in the introduction of the 
Prioritized Experience Replay (SPER) mechanism and the 
use of a “Sum-Tree” data storage architecture. This ap-
proach enables the algorithm to utilize sample data more 
efficiently during operation, significantly improving its 
runtime efficiency and sample utilization. Additionally, 
the algorithm employs multi-step expected temporal dif-
ference methods to solve for optimal policies, further ac-
celerating convergence. In simulation experiments involv-
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ing diverse static and dynamic obstacle environments, the 
APF-SPER-DDPG algorithm was comprehensively com-
pared with the APF-DDPG algorithm. The results indicate 
that the new algorithm demonstrates clear advantages in 
key metrics such as convergence speed, training duration, 
and collision avoidance planning performance, making 
it more effective in handling collision avoidance tasks in 
complex environments and providing more reliable safety 
guarantees for mobile robots.

3.2 improvements Based on the SaC algorithm
Given that the DDPG algorithm’s deterministic policy 
limits its exploratory capabilities and adaptability in com-
plex environments, some researchers have turned their 
attention to the SAC algorithm and made significant im-
provements. Wang Xiaoning[3] and colleagues designed 
the AM-LSTM-SAC algorithm, a representative example 
of such improvements. This algorithm innovatively inte-
grates Long Short-Term Memory (LSTM) networks into 
the SAC algorithm, greatly enhancing its ability to learn 
from sequential sample data and effectively addressing 
the issue of insufficient representation of obstacle state 
information in DDPG-based collision avoidance planning 
methods.
Furthermore, the algorithm optimizes LSTM encoding 
using attention-based mechanisms, further improving data 
quality and enabling the algorithm to more accurately 
capture environmental information during the learning 
process, thereby accelerating convergence. In simula-
tion experiments across different obstacle environments, 
the AM-LSTM-SAC algorithm was compared with the 
APF-SPER-DDPG algorithm and the traditional SAC 
algorithm. The results show that the AM-LSTM-SAC 
algorithm outperforms in key aspects such as path length, 
smoothness, and collision avoidance success rate, demon-
strating excellent stability and strong generalization capa-
bilities. This provides a more effective solution for path 
planning in complex environments.

4. application of Deep Reinforcement 
Learning in Mobile Robot Control

4.1 Control Methods Based on Deep Reinforce-
ment Learning
For mobile robot control, a trajectory tracking human-like 
intelligent control method based on deep reinforcement 
learning has been developed. The design of the underly-
ing controller incorporates human-like intelligent control 
principles, achieving an organic integration of perception 
schemas, motion schemas, and control coordination. By 

real-time monitoring and analysis of the robot’s pose error 
states, characteristic modes are accurately determined, and 
appropriate control modes are selected accordingly.
In the application of deep reinforcement learning, its ad-
vantage in adjusting control parameters under small error 
states is fully utilized. With specially designed modules 
for extracting motor operating characteristics and calcu-
lating velocity vector errors, comprehensive information 
about the robot’s operating state is obtained. During the 
robot’s trajectory tracking process, deep reinforcement 
learning continuously optimizes control strategies through 
extensive training and trial-and-error, gradually obtaining 
optimal control parameters. This approach successfully 
achieves high-precision trajectory tracking control for 
three-wheeled omnidirectional mobile robots[4], signifi-
cantly enhancing the robot’s motion control performance 
in complex environments and enabling more stable and 
accurate movement along predefined trajectories.

5. Research Summary and outlook

5.1 Summary of Research achievements
In the research progress of path planning and control for 
mobile robots, existing studies have achieved a series of 
key advancements through continuous improvement and 
innovation of deep reinforcement learning algorithms. 
Numerous carefully refined algorithms have demonstrated 
significantly enhanced capabilities in addressing the chal-
lenges of complex and dynamic environments. In terms 
of path planning efficiency, innovative strategies such as 
integrating ant colony algorithms with deep reinforcement 
learning have effectively improved planning speed and 
accuracy, enabling robots to quickly and precisely plan 
reasonable paths while skillfully avoiding various static 
and dynamic obstacles. This greatly reduces travel time 
and energy consumption. In terms of control precision, 
improvements such as optimizing network structures 
and reward mechanisms have made the robot’s motion 
control more accurate and stable, allowing it to closely 
follow predefined trajectories with reduced deviations 
and jitter. These achievements provide a solid technical 
foundation for the widespread application of mobile ro-
bots in real-world scenarios, significantly expanding their 
application depth and breadth, and strongly advancing the 
development of mobile robot technology.
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