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Abstract:

Parasitic effects caused by interconnects have become
increasingly critical in modern analog integrated circuits,
especially as technology nodes in the semiconductor
industry continue to advance. This paper presents an
automated sensitivity analysis and simulation evaluation
framework that addresses these challenges using Cadence
SKILL and the Virtuoso platform. The purpose of
this research is to identify and quantify the impact of
interconnect parasitic parameters on circuit performance,
enabling more efficient post-layout optimization. The
proposed method incorporates automated parasitic
insertion, simulation management, and statistical
evaluation. Morris-based sensitivity analysis is used
to determine the significance of individual parasitic
elements, while a two-dimensional interaction analysis
based on regression identifies pairs of critical variables
with compensatory behavior. The experimental test case
is a bandgap reference circuit implemented in TSMC
65nm technology, and key performance indicators such
as gain, bandwidth, gain-bandwidth product, phase
margin, and power supply rejection ratio are evaluated
to comprehensively score the sensitivity indicators under
various performance conditions. The results demonstrate
that the proposed method can effectively identify critical
parasitic parameters affecting the performance and maintain
high simulation accuracy while significantly reducing
complexity by ignoring low-sensitivity parameters.
This research offers an efficient and scalable analysis
approach for post-layout simulation modeling of analog
circuits, showing strong potential for practical engineering
applications.

Keywords: Parasitic Parameters, SKILL Language, Sen-
sitivity Analysis, Morris Method, Interaction Effects
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1 Introduction

As integrated circuits continue to evolve, their minia-
turization and increased complexity bring challenges in
accurately modeling. In the early days of integrated circuit
technology, the speed of circuits was primarily determined
by the switching speed of individual transistors, and the
parasitic effects of interconnections could be largely neg-
ligible. As IC fabrication has advanced into increasingly
smaller technology nodes, the continuous scaling down of
feature sizes and the growing density of devices have sig-
nificantly increased the density and structural complexity
of interconnects. While this trend has improved integration
and performance, it has also made the parasitic resistance,
capacitance, and inductance effects generated by intercon-
nects increasingly prominent. These parasitic effects now
exert a substantial impact on critical performance metrics
such as timing, power consumption, noise, and stability,
and have become one of the major factors limiting circuit
performance[1]. Parasitic effects are critical considerations
in the post-layout simulation phase. However, when faced
with the large number of parasitic parameters introduced
by complex interconnections, indiscriminately introduc-
ing all parasitic variables leads to a significant increase in
simulation complexity and runtime. Therefore, identifying
the key parasitic parameters that most significantly impact
circuit performance and reducing the dimensionality of
simulation inputs without compromising accuracy, is of
considerable research importance in contemporary analog
circuit design and verification processes.

Sensitivity analysis, as a fundamental approach for eval-
uating the influence of model input parameters on output
responses, has been widely adopted in the field of EDA.
Common sensitivity analysis methods used in engineering
and scientific computing include local sensitivity anal-
ysis, variance-based sensitivity analysis, and the Morris
method. Among them, the Morris method[2] is particu-
larly favored for its high computational efficiency and
simplicity, making it well-suited for preliminary screening
in high-dimensional models. In complex systems, interac-
tions among parameters can significantly influence over-
all system performance. Traditional sensitivity analysis
methods often fail to account for such interaction effects,
leading to an incomplete or misleading understanding of
system behavior. To address this limitation, researchers
have proposed various approaches to analyze and quantify
parameter interactions. For instance, the Sobol method[3]
assesses higher-order sensitivity indices to evaluate the
contribution of parameter interactions. Regression analy-
sis is another commonly employed method; by incorporat-
ing interaction terms into regression models, it becomes
possible to quantitatively evaluate how the interplay be-

tween parameters affects the system output.

This study aims to address the following issues in the
circuit design simulation phase: how to algorithmically
and systematically evaluate the impact of a large number
of parasitic parameters; how to identify high-sensitivity
variables and eliminate redundant parameters; and, on
this basis, how to further explore the interactions among
variables to support symmetry-aware design and optimize
matching strategies. In summary, we proposed and imple-
mented an automated framework for parasitic parameter
simulation and sensitivity evaluation based on the Ca-
dence Virtuoso and SKILL language:

» A set of SKILL scripts was developed to automate the
insertion of parasitic variables, enabling procedural inser-
tion of parasitic parameters of metal interconnect, param-
eter configuration, and schematic updating.

* Combining SKILL-based simulation control scripts with
the Morris method, we performed quantitative sensitivity
analysis to assess the comprehensive impact of parasitic
parameters on circuit performance. Key variables with the
most significant influence on performance metrics were
identified, and comparative simulations were conducted
before and after processing to validate the effectiveness of
parasitic compression.

* Combining two-dimensional parameter scanning with
regression-based interaction effect analysis, a method
using the SKILL language to analyze interaction effects
between pairs of parasitic parameters.

2 Automated Insertion of Parasitic
Variables

To eliminate the tedious and error-prone process of man-
ually inserting parasitic devices into each node, we devel-
oped a comprehensive automation script based on SKILL
language[4]. The script enables batch insertion of parasitic
resistors and capacitors into the schematic while ensuring
correct connectivity. To achieve automated modeling of
parasitic parameters, strict insertion rules must be defined
and implemented through SKILL-based algorithmic logic.
According to the modeling requirements, a series resistor
and a parallel capacitor to ground are inserted between
each network node and its connected device terminals, to
emulate the series resistance in metal interconnects and
the parasitic capacitance from metal wires to ground.

The script first retrieves all net objects from the extracted
schematic of the target cellView. It iterates over all nets,
and for each net, it extracts all connected device termi-
nals. For each terminal, a set of resistors and capacitors is
inserted, along with the creation of a new intermediate net
node to implement the required series and parallel connec-



tions. To avoid naming conflicts and facilitate parameter
sweeps in later simulations, the parameters for resistor
and capacitor instances are dynamically generated using
a counter (e.g., “r1”, “c1”). During resistor instance cre-
ation, one terminal is connected to the original net, and the
other terminal is connected to a newly created net. Simi-
larly, for capacitor instances, one terminal is connected to
ground, while the other is connected to the same new net
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node used for the resistor. All newly created instances are
placed in sequence above the original circuit layout. For
clarity, all existing wire shapes in the cellView are first
deleted. After creating instances and their terminals, wire
stubs are generated for all devices, and labels are added to
the wires based on the net attributes of the instance termi-
nals, facilitating visual inspection and debugging.

Algorithm 1: Automated Insertion of Parasitic Variables

Input: Target schematic cellView (cv)
1 Delete all wire shapes
2 foreach net € cv — nets do

3 if number of connected instance terminals net — instTermCount = 2 then
4 Create parasitic device instance: dbCreateParamiInst()
5 Create new net: n_net = dbCreateUniqueNamedNet()
6 Modify net property of one instance terminal: insTerm — net = n_net
7 Create R/C instance terminals and set net properties: dbCreatelnstTerm()
8 else
9 foreach instance terminal insTerm € net — allInstTerms do
10 Create parasitic device instance: dbCreateParamInst()
11 Create new net: n_net = dbCreateUniqueNamedNet()
12 Modify instance terminal’s net property: insTerm — net = n_net
13 Create R/C instance terminals and set net properties: dbCreatelnstTerm()
14 end
15 end
16 end

17 Select all instances in cv: schHiSelectAll()

18 Generate wire stubs for all instances: schHiCreateWireStubs()

19 foreach instance inst € cv — instances do

20 foreach instance terminal instTerm € inst — instTerms do

21 foreach terminal € inst — master — terminals do

22 foreach pin € terminal — pins do

23 if pin — net — name = instTerm — name then

24 Transform pin’s bounding box to schematic coordinates:
pinBox = dbTransformBBox()

25 Find overlapping wire stub: wire = dbShapeQuery()

26 foreach child object child € wire — children do

27 if child — objType = “label” then

28 | Update label text: child — theLabel = instTerm — net — name

29 end

30 end

31 end

32 end

33 end

34 end

35 end

3 Automated simulation and parame-
ter sensitivity analysis

The test object used in this study is a bandgap voltage
reference designed using the TSMC 65nm CMOS pro-

cess , with an operating voltage of 1.8V and an operating
temperature range of -40°C to 125°C. Simulation setup
and control are carried out using Ocean Script. OCEAN,
a subset of the SKILL language, enables automated con-
figuration of the simulation environment within Cadence,
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allowing simulations to be executed from the command
line with full control from start to finish. This makes it
particularly suitable for large-scale parameter sweeps and
Monte Carlo analyses.

With Ocean Script, users can selectively save only the
simulation data of interest and directly store the results in
individual or batch files, which not only conserves stor-
age space but also facilitates post-simulation review and
further data analysis. To reduce manual intervention and
streamline the evaluation process, we write Ocean Script
to configure simulations for various performance metrics,
define parameter sweeping strategies, manage data stor-
age, and perform preprocessing. The script is integrated
with SKILL-based sensitivity analysis algorithms, en-
abling the construction of a unified SKILL-driven frame-
work for automated simulation and evaluation.

Since SKILL is a proprietary language of the Cadence
Virtuoso and lacks the advanced data structures and ran-
domization libraries found in languages like Python, we
need to manually implement the sampling logic, simula-
tion control, and analytical algorithms. Specifically, we
used loop control statements and the append() function to
construct a list of parasitic parameters and iterate through
all variables. Considering that parasitic parameter names
follow a structured naming convention of “parameter type
+ index” , we classified parameter types by inspecting the
first character of their names and assigned corresponding

value ranges accordingly. These value ranges were deter-
mined based on the specifications of the employed process
design kit.

We use the Morris method[2] to analyze the sensitivity
of parasitic parameters. The Morris method is an im-
proved global sensitivity analysis technique derived from
the local one-at-a-time method (OAT). It is particularly
well-suited for scenarios involving a large number of
input variables and limited computational resources, as
it enables efficient identification of key parameters. The
core idea of the Morris method is to compute the elemen-
tary effect (EE) of each parameter by sequentially varying
one input at a time and observing its impact on the model
output, then statistically analyzing the mean ( x) and
standard deviation ( o) to assess the variable’s impact
on the model output.For multi-parameter models, each
input variable is first normalized to the unit interval [0,1]
and discretized into an evenly spaced set of values with
a resolution level defined by the discretization level p. A
trajectory is then constructed within the parameter space
Q, along which the EE values are computed[5]. The
number of simulations required to complete one round of
EE value calculations along the trajectory path is p, while
the number of simulations required for random sampling

is 2(p—1). The method of sampling along the trajectory

path requires fewer simulations.

(a) Sampling points selected randomly; six simulations are re-
quired to obtain the EE values of the three variables.

(b) Sampling points selected along the trajectory path; only four
simulations are required to obtain the EE values of the three vari-
ables.

Figure 1: Parameter space of a three-variable model, p =4

Trajectory paths are used to represent disturbances in
variables, thereby calculating the EE value for each input
variable. The elementary effect is defined by the following
equation:

EEi:y(xl,xz,...,xl. +AA,...,xk)—y(x) )

In this case, A is the step size for each variable perturba-

tion.To define the path of each trajectory, Morris used a
series of matrices to construct the final trajectory matrix

*

B
* * A * L
B =(J,x +5[(ZB—JM)D +J,, P )

Among them, B is a (k+1)xk sampling matrix, with



each column having two rows that differ only in the i-th
item; D" is a diagonal matrix, whose diagonal elements
take values of +1 or -1 with equal probability, allowing
the variable to increase or decrease by A; Pisa kxk
permutation matrix, with each row and column contain-
ing only one 1; x is a reference point vector randomly
selected from [0,1-A]; J,, is an mxk identity matrix
with all entries equal to 1.Each column (variable) in B*
undergoes a perturbation of +A or —A in a specific row.
Multiple trajectory matrices B* can be combined to form
the final experimental matrix X .

Scale the columns of X to the range of variation of the
input variables, calculate the EE value of each variable

on r paths, and calculate the mean g, and standard de-
viation o, of the basic effect of the input variables. To
eliminate the influence of monotonic effects, mean the

absolute value g can be used to evaluate the sensitivity
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of variables:

EEY)

4= 3)
ra

Since we need to comprehensively score the sensitivity in-
dicators under various performance conditions, it is neces-
sary to normalize the performance indicators to make the
sensitivity indicators balanced and comparable. We modi-
fy the calculation formula for the basic effect in the Morris
method, taking the performance indicators obtained from
the simulation with all parameters set to the default value
as the baseline value. The modified calculation formula
for the basic effect is as follows:

EE.:y(x,,xz,...,x,+A,...,xk)—y(x) @)

l A- y(x(o) )
The SKILL program was written based on the basic prin-
ciples of the Morris method:

Algorithm 2: Matrix inversion

Input: A list of 4 sublists, each containing 4 elements, denoted as matrix X
1 Augment each sublist to construct an augmented matrix

2 fori=1 to 4 do

3

4 for j=i¢+1 to4do

5 if nth(j nth(i X) =0+ 0 then
6 | Swap the i-th and j-th rows
7 end

8 end

9

end
10 Normalize the i-th row by nth(i nth(i X):

11 for j=1to4do

if the pivot element is zero: nth(i nth(i X) = 0 then

nth(k nth(i X) < nth(i nth(k X)/nth(i nth(i X)

12 if j # i then

13 factor < nth(i nth(j X) for k=1 to 8 do

14 | nth(k nth(j X) < nth(j nth(k X) — factor - nth(k nth(i X)
15 end

16 end

17 end

18 end

19 return The right 4 columns of the augmented matrix as X ~*

After running the script, it will output a sorted table in-
cluding parameter names, sensitivity metrics for each
parameter, and a comprehensive sensitivity score obtained
by summing the sensitivity metrics.

4 Two-dimensional interaction effect
analysis based on regression models

Interaction refers to the influence on the output caused

by the combined behavior of two or more variables. In
a multi-parameter model, input variables may not only
have direct effects on the output, but can also interact in a
synergistic or antagonistic manner, resulting in significant
interaction effects that influence system performance. A
common approach to analyzing interaction effects between
continuous variables is to fit a regression model that in-
cludes interaction terms. For two continuous independent

variables x; and x,, their interaction can be quantitative-
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ly analyzed using a regression model that includes both
the main effects and their interaction term x,x, , typically
formulated as:

Y =P+ Bxy+ fox, + fixix, +0 (5)
where f, and S, represent the main effect coefficients of
x, and x,, respectively, while [, represents the interac-
tion effect coefficient. The absolute value of f; indicates

the strength of the interaction between x, and x,; the
larger the value, the more significant the interaction ef-

fect. Assuming that x; and x, influence the output in the
same direction—that is, £, and f, share the same sign—
a positive f; suggests an antagonistic effect. This means

the joint variation of x;, and x, may attenuate their indi-
vidual effects on the output. In circuit performance simu-
lations, this typically manifests as a smaller performance
degradation when both x; and x, increase or decrease
simultaneously, compared to changing only one of them.
On the other hand, if x; and x, have opposite effects on
the output, it is possible to devise a coordinated variation
scheme based on the fitted coefficients. Suppose the pa-
rameter pair (x,,x,) is varied such that x, =kx, ; then,

according to the regression regression, when k=-p,/ f3,,

the linear main effects cancel each other out. the output is
dominated by the quadratic term, and for small parameter
variations, this approach can effectively suppress output
fluctuations.

The parameters of the regression model are typically esti-
mated using the least squares method. The objective of the
least squares method is to determine a set of parameters

ﬁo, ,Bl, ﬁ’Q, ,33 that minimize the sum of squared residuals

between the predicted and actual values.
Assuming a sample size of 7, the design matrix X is
constructed as follows:

Loxy x, XX,

Loxy xy X0y

2?2 7 7

X =

1 x

nl an xnlxn2
where the first column corresponds to the intercept term,

the second and third columns to the linear terms of x; and

x, , respectively, and the fourth column to the interaction

term. The regression model is then reformulated in matrix
form as:

Y=Xp+0 (6)
The residual sum of squares ( RSS') is defined as:
RSS=(Y-XpB)' (Y -X ) (7)

To obtain the least squares estimate of f, we take the de-

rivative of RSS with respect to £ and set it to zero:

ORSS

W__ZX Y-XB)=0 (8)

Solving this equation yields the least squares estimator:
B=X"X)"X"Y ©9)
To investigate the interaction effects between variables,
we need to perform a combinatorial sweep of all parasitic
parameters. Based on the results of the sensitivity analysis
in the previous chapter, we select only the the high-sen-
sitivity parasitic parameters that significantly impact
performance as the focus of this study. Consistent with
the previous chapter, we use OceanScript to control the
two-dimensional parameter sweep simulations. By iterat-

ing through the list of parameters (x;,x;) using a nested

loop, simulation setup, execution, and result extraction
can be automatically completed. Since the coefficient fit-
ting in the linear regression model involves matrix opera-
tions, and because the the SKILL language is essentially a
Lisp-based language that operates primarily through lists
and lacks built-in matrix computation libraries, all matrix
operations must be implemented manually.

1. Constructing the design matrix

Algorithm 3: Constructing the design matrix

Input: List of sample points paramspairs = {(

Output: Design matrix X € R"*4
Initialize an empty list X = list()
foreach (z1,x2) € paramspairs do

end
return X

[ U

(8 (i)) n

L1 To ) yi=1

| Construct a row and append it to X:X = append1(X (1 z1 x2 z122))

As shown in Algorithm 1, the mapcar() function is used to
apply an operation to each sample pair (x,,x,) : it extracts

the first dimension x, and the second dimension x, and

constructs a new lis X X7 X, X5 )« €S€ rows arc cn
truct list (1xx,%x,). Th th

aggregated to form a list-based design matrix for multiple



linear regression with interaction terms.

2. Matrix transposition

The mpcar() function in SKILL can be used to sequen-
tially operate on elements of each sublist within a list
collection. By combining the mpcar() function with list
generation techniques, it is possible to extract elements
from sublists in a systematic manner, thereby achieving
functionality analogous to matrix transposition.

3. Matrix multiplication

Given two matrices X, and X, to be multiplied, the first
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step is to transpose X, . Then, by applying the mapcar()
function in a nested manner, one can multiply correspond-
ing elements of each sublist in X, and the transposed X,
, and compute their sum.

4. Matrix inversion

Since the inversion in Equation 9 only involves a 4x4 ma-
trix, it is sufficient to implement the inversion for a 4x4
matrix. This can be accomplished using the Gauss-Jordan
elimination method.

Algorithm 4: Matrix inversion

Input: A list of 4 sublists, each containing 4 elements, denoted as matrix X
1 Augment each sublist to construct an augmented matrix

2 fori=1 to4do

3

4 for j=i+1to4do

5 if nth(j nth(i X) =0 # 0 then
6 | Swap the i-th and j-th rows
7 end

8 end

9

end
10 Normalize the i-th row by nth(i nth(i X):

11 for j =1 to 4 do

if the pivot element is zero: nth(i nth(i X) = 0 then

nth(k nth(i X) < nth(i nth(k X)/nth(i nth(i X)

12 if j # 14 then

13 factor < nth(i nth(j X) for k=1 to 8 do

14 | nth(k nth(j X) < nth(j nth(k X) — factor - nth(k nth(i X)
15 end

16 end

17 end

18 end

19 return The right 4 columns of the augmented matrix as X 1

Once matrix operations are implemented, the regression
coefficients can be solved directly according to Equation 9.
By integrating the simulation loop with the analysis code,
the regression models for all variable pairs can be com-
puted.

5 Result

We conducted sensitivity analysis on both the core circuit
and the operational amplifier (op-amp) of the bandgap ref-
erence.

1. Core circuit The cellView contains 95 pairs of para-

sitic parameters after insertion. We set the discretization
level p=10 and the number of trajectories =10, and
analyzed its temperature coefficient. The sensitivity score
threshold is set to 0.1. After filtering, there are 19 high-
ly-sensitivity parameters in the core circuit.

2. Operational amplifier The cellView contains 47 pairs
of parasitic parameters after insertion.We set the discreti-
zation level p =10 and the number of trajectories » =10
, and analyzed its temperature coefficient. The sensitivity
score threshold is set to 0.01. After filtering, there are 19
highly-sensitivity parameters and 75 low-sensitivity pa-
rameters in the op-amp.
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A SHERIE T
T T

29

27

I Gain(dB) —
[ 308 BW(Hz)
[ eBwW(Hz) B
I Phase Margin(deg)

L L L L L

0 0.5 1 1.5 2

25 3
BURIELEE Py

35 4 45 5 5.5

Figure 3: Sensitivity ranking of parasitic parameters of the op-amp

To verify the effectiveness and accuracy of the simulation
framework and sensitivity analysis method, we performe
multiple sets of Monte Carlo simulations on the test cir-
cuit with each set of simulations performed twice: The
first run retained all parasitic parameters, and calculated
the deviation of the simulation results from the reference
value; the second run retained only the high-sensitivity
parasitic parameters, setting all low-sensitivity parameters
to zero, and again calculated the deviation from the refer-

ence.

The number of Monte Carlo simulations was set to 50. For
the core circuit, the absolute relative error in the tempera-
ture coefficient between the first and second run is 0.00682.
For the op-amp, the absolute relative errors in low-fre-
quency gain,-3 dB bandwidth,Gain-bandwidth product
(GBW), Phase margin are 0.00358, 0.00705, 0.00705,
0.00411, respectively.
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Figure 5: Core circuit temperature drift curves under different simulation strategies
As can be seen, the average absolute relative error in all  reliable simulation outcomes, significantly reducing com-
metrics is less than 0.01, indicating that the low-sensitivi-  putational complexity without sacrificing accuracy.
ty parameters contribute minimally to performance. Thus,
eliminating low-sensitivity parasitic parameters still yields
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6 Conclusion

This paper addresses the impact of parasitic parameters on
the performance of analog integrated circuit design, and
proposes an automated method for circuit sensitivity anal-
ysis and interaction effect evaluation based on Cadence
SKILL. The main contributions of this work are summa-
rized as follows:

1. An automated simulation control framework based on
SKILL and OCEAN scripting is proposed and implement-
ed which supports multi-parameter batch simulations and
data extraction, significantly reducing manual workload
and improving the repeatability and efficiency of simu-
lation tasks. The sensitivity analysis and modeling flow
developed on this basis can be directly integrated into
existing EDA processes, demonstrating strong practical
value.

2. To address the large number of potential parasitic pa-
rameters in circuits, the Morris method is used to conduct
sensitivity analysis on the parasitic elements of intercon-
nects, thereby identifying parameters that significantly
impact key circuit performance metrics. This method
balances computational efficiency and interpretability of
result, laying a solid foundation for subsequent modeling
and optimization.

3. The study investigates the interaction effects among
parasitic parameters. By designing two-dimensional pa-
rameter sweep experiments and implementing a regression
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analysis model in SKILL, the work quantitatively identi-
fies several parameter pairs that exhibit negative synergis-
tic effects on performance variation. Experimental results
confirm that incorporating interaction effect modeling
substantially enhances the explanatory power regarding
performance trends and provides actionable directions for
optimization.

Overall, this work implements a complete workflow from
sensitivity analysis to interaction effect evaluation, offer-
ing both tool support and theoretical grounding for circuit
reliability analysis and parasitic effect modeling.
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