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abstract:
With the acceleration of urbanization, traffic congestion 
has become increasingly prominent. Lacking dynamic 
adaptability, traditional methods of traffic signal control 
struggle to handle complex traffic flows. This article 
discusses the potential application of deep learning 
technologies in intelligent traffic signal planning by 
focusing on reinforcement learning (RN) and supervised 
learning. The reinforcement learning framework optimizes 
signal sequence through dynamic modeling and real-time 
decision-making, significantly reducing vehicle waiting 
time and travel time in both single-intersection and multi-
intersection coordinated control scenarios. Supervised 
learning models provide data-driven support for control 
strategies via high-precision traffic flow prediction. 
Experimental results demonstrate that these technologies 
improve traffic efficiency (e.g., average vehicle speed 
increased by 4.2%) and adapt to sudden traffic incidents. 
However, challenges such as high data dependency and 
insufficient model generalizability remain unresolved.
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inforcement Learning, Multi-Intersection Coordinated 
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1. introduction
The optimization of intelligent traffic signal control 
plays a pivotal role in alleviating urban traffic con-
gestion and enhancing road network efficiency within 
modern urban transportation management. Tradition-
al traffic signal scheduling methods, which rely on 
predefined timing sequences or historical data-driven 
optimization models, often struggle to adapt in real 

time to complex and dynamically shifting traffic flow 
patterns. As a cutting-edge technology in artificial 
intelligence, deep learning offers novel solutions 
for intelligent traffic signal planning by leveraging 
its robust data processing capabilities and adaptive 
learning mechanisms. By integrating traffic flow 
data, vehicle detection metrics, and environmental 
factors, deep learning algorithms can predict traffic 
trends, optimize signal timing configurations, and 
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dynamically adjust signaling strategies under special sce-
narios such as holidays or emergencies. This approach ul-
timately enables more intelligent and efficient urban traffic 
management systems, fostering a paradigm shift toward 
data-driven infrastructure optimization.

2. Urban Traffic Intersection Context
The persistent expansion of modern cities has rendered 
traffic congestion a pervasive challenge in metropol-
itan areas, with transportation inefficiencies not only 
undermining urban operational productivity but also di-
minishing public satisfaction and quality of life in daily 
commutes[3]. According to data released by the China 
Association of Automobile Manufacturers, automotive 
production and sales in 2024 reached 31.282 million and 
31.436 million units, respectively, reflecting year-on-year 
growth rates of 3.7% and 4.5% [4]. The surge in vehicle 
manufacturing and subsequent influx into urban road net-
works stands as a primary contributor to escalating traffic 
congestion. Another prevalent factor exacerbating this 
issue lies in suboptimal traffic signal coordination, which 
frequently leads to diminished throughput at individual 
or clustered intersections. Consequently, integrating deep 
learning methodologies with traffic signal optimization 
represents a critical solution to address the evolving de-
mands of contemporary urban transportation systems.

3. Traditional Methods for urban in-
tersection Signal Control
Traditional traffic signal control systems are primarily cat-
egorized into two approaches:
Fixed-Cycle Signal Timing: This method operates on 
predetermined cycle sequences and static timing config-
urations, ensuring baseline traffic flow efficiency under 
routine conditions. However, it exhibits significant limita-
tions in dynamically addressing abrupt congestion scenar-
ios, such as morning peak hours or holiday-induced traffic 
surges, due to its inherent rigidity.
Predefined Multi-Mode Schemes: These systems employ 
multiple signal patterns (e.g., varying cycle sequences or 
timing allocations) to adapt to diverse traffic scenarios. 
While this approach can mitigate congestion under pre-
dictable conditions, it often fails to resolve inefficiencies 
caused by stochastic traffic variations (e.g., irregular hol-
iday traffic patterns), where suboptimal phase duration 
allocations exacerbate intersection bottlenecks.

4. The Potential of Deep Learning in 
Traffic Management
Traditional approaches to mitigating traffic congestion, as 
described above, often necessitate manual intervention by 
traffic police to regulate intersection flows. Traffic police 
typically assess real-time vehicular density across direc-
tional lanes and implement tailored strategies to optimize 
throughput. However, when congestion arises simulta-
neously at multiple intersections, logistical constraints—
including limited police availability and coordination 
inefficiencies—exacerbate operational challenges. Deep 
learning aims to address these limitations by enabling al-
gorithm-driven, autonomous traffic control systems. Such 
systems not only facilitate adaptive signal adjustments 
at individual intersections but also achieve coordinated 
multi-node optimization through real-time data integra-
tion. This paradigm shift toward intelligent, intercon-
nected traffic management holds promise for maximizing 
network-wide vehicular efficiency while minimizing hu-
man-dependent decision-making bottlenecks.

5. application of Deep Learning in in-
telligent Traffic Signal Control

5.1 Reinforcement Learning (RL)-Based Con-
trol Framework
The reinforcement learning (RL)-based control frame-
work enables real-time optimization of traffic signal 
decisions through dynamic modeling. Its core principle 
involves mapping traffic states (e.g., lane density, pedes-
trian flow) to continuous or discrete actions (e.g., phase 
switching, green signal ratio adjustments) and iteratively 
refining control policies via reward functions that balance 
efficiency, equity, and safety. This framework leverages 
deep learning architectures, such as YOLO for object 
detection and LSTM for temporal pattern extraction, to 
derive high-fidelity state representations. Algorithms like 
Deep Q-Networks (DQN) and Proximal Policy Optimiza-
tion (PPO) facilitate rapid policy updates under dynamic 
conditions. In practice, RL-driven systems, exemplified 
by Shenzhen’s TrafficGo platform[5], dynamically adapt 
signal cycles and green ratios based on real-time traffic 
flow, achieving significant reductions in average vehicle 
delay at individual intersections. Nonetheless, challenges 
persist, including high data dependency, inference latency, 
and susceptibility to local optima, necessitating further ad-
vancements in lightweight model design and multi-agent 
collaboration for scalable urban deployment.
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Figure 1 Deep Learning-Traffic Signal 
Control Framework

5.1.1 Single-intersection Control (State-action-Reward 
Modeling)

Pan T. proposed a dual-phase framework integrating of-
fline pretraining and online learning for single-intersection 
signal control, emphasizing structurally refined state-ac-
tion-reward (SAR) modeling. The methodology employs 
a phase-gate (phase-specific gating) neural network 
architecture to differentiate decision logic across signal 
phases, enhancing traffic flow adaptability. A memory 
palace mechanism is introduced to mitigate sample im-
balance issues, such as policy degradation due to memory 
dominance by high-frequency actions [5]. Experimental 
results demonstrate that, compared to traditional fixed-sig-
nal control, the RL-based approach significantly reduces 
vehicle waiting time (57.1%), queue length (40.9%), and 
total travel time (16.8%) across balanced, imbalanced, and 
abrupt traffic scenarios. However, scalability to multi-in-
tersection coordination remains challenging, and robust-
ness under extreme traffic events requires further investi-
gation.
Qin Qiao et al. developed an enhanced Advantage Ac-
tor-Critic (A2C) algorithm for critical intersections near 
large-scale event venues [6]. By reconstructing the reward 
function to disaggregate vehicle queuing time based on 
travel modes and introducing passenger-load parameters 
to amplify public transit delay impacts, the model priori-
tizes event participant demands during phase transitions. 
The state space (22×14-dimensional) captures lane-spe-
cific flow rates, queuing grids, and bus counts, while the 
action space dynamically adjusts green durations across 
four phases. A dynamic ε-greedy strategy balances explo-
ration and exploitation. Simulation on the Beijing Capital 
Gymnasium intersection via SUMO platform reveals a 
total delay reduction of 65.7% compared to conventional 
fixed-time control, a 21.4% improvement over DQN, and 
a 38.6% decrease in bus waiting time, validating efficacy 

in transit priority and system-wide efficiency. Limitations 
include isolated control assumption and reliance on em-
pirical parameter tuning for simulations.
Sharma M. et al. implemented a YOLOv3-based object 
detection system integrated with SORT (Simple Online 
and Realtime Tracking) for vehicle trajectory association, 
enabling real-time traffic volume estimation via virtual de-
tection lines. The system dynamically allocates green time 
to high-density traffic directions and incorporates emer-
gency vehicle priority protocols. Experimental results [7] 
demonstrate a 40% reduction in vehicle waiting time and 
25% decrease in travel delay under complex Indian road 
conditions, with hardware costs reduced by more than 
90% compared to inductive loop solutions. Key strengths 
include adaptability to unstructured traffic environments, 
end-to-end visual perception for precise flow analysis, 
and historical pattern learning for cycle optimization. 
However, detection accuracy declines by **approximately 
15%** under high vehicle density, and performance is 
compromised by nighttime light interference and low-vis-
ibility conditions. While peak-hour efficiency improve-
ments are notable, coordinated control capabilities in 
extreme congestion scenarios remain unverified.
5.1.2 Multi-intersection Coordinated Control (Multi-
agent RL)

Liu Yi et al. [8] applied reinforcement learning to urban 
traffic signal control through a case study of eight adjacent 
intersections in Shenzhen’s Bantian district. Their frame-
work utilizes a Deep Q-Network (DQN) architecture, 
which processes traffic image sequences as inputs and out-
puts Q-values for signal phase selection. To enhance train-
ing stability, the authors integrated experience replay and 
target network mechanisms. The reward system employs 
a hierarchical structure balancing traffic efficiency, safety, 
and equity, while incorporating traffic state recognition 
(e.g., free-flow, congestion, gridlock). Post-implementa-
tion data indicate a 4.2% increase in network-wide aver-
age vehicle speed. A critical limitation is the dependency 
on specialized hardware for data acquisition, which con-
strains adaptability to heterogeneous traffic environments.
Xia Gege et al. developed a multi-agent DQN framework 
for coordinated control of large-scale traffic networks. 
Each intersection operates as an independent agent with a 
multidimensional state space capturing vehicle positions, 
speeds, and signal phase statuses. The action space im-
plements a binary decision protocol (“phase retention” or 
“phase switching”). The reward function integrates aver-
age queue length and delay time across the network, with 
spatial traffic flow features extracted by convolutional 
neural networks (CNNs). Coordinated optimization is en-
abled through synchronized experience replay and target 
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network updates. Experiments in a 2×2 intersection model 
[9] demonstrate convergence after 200 training episodes, 
achieving stable average queue lengths of 3 vehicles per 
intersection and 15-second delays. Compared to fixed-
time control, the method reduces overall delay by 35.37% 
and queue length by 38.51%, with optimal convergence 
parameters identified as learning rate = 0.001 and discount 
factor = 0.75. Strengths include dynamic adaptation to 
traffic fluctuations via multi-agent interactions; limitations 
encompass high computational complexity, prolonged 
training cycles, and unresolved challenges in communi-
cation latency and generalization across heterogeneous 
intersection configurations.

5.2 Supervised Learning-Based Traffic Flow 
Prediction and optimization (LSTM, Trans-
former)
Alfonso Navarro-Espinoza et al. highlight that deep learn-
ing-based traffic flow prediction serves as a foundational 
component for reinforcement learning control frame-
works. Long Short-Term Memory (LSTM) networks, 
which utilize gated recurrent units to model long-range 
temporal dependencies, demonstrate superior performance 
in short-term traffic flow forecasting. The authors propose 
a bidirectional LSTM architecture that integrates histori-
cal traffic data and meteorological variables, achieving an 
18.6% reduction in root mean square error (RMSE) over 
5-minute prediction horizons compared to traditional ARI-
MA models. To enhance temporal correlation modeling, 
the framework incorporates multi-head attention mecha-
nisms, resulting in a 12.3% accuracy improvement over 
standalone LSTM models during weekday morning peak 
hours in Beijing [10]. The model exhibits robust adapt-
ability to abrupt traffic disturbances (e.g., accidents), with 
validation in Shenzhen’s Futian Central District showing 
21.4% lower RMSE in 15-minute prediction tasks rela-
tive to single-model approaches. To address Transformer 
architectures’ inherent computational complexity, the 
authors introduce a lightweight Transformer variant with 
sparse attention mechanisms, enabling deployment on em-
bedded devices for real-time signal control. Despite bal-
ancing prediction accuracy and computational efficiency, 
LSTM-based methods still face limited generalizability to 
extreme traffic scenarios, which remains an open research 
challenge.
Xu M. proposed the Spatial-Temporal Transformer Net-
work (STTN), which advances short-term traffic predic-
tion through dynamic spatiotemporal dependency model-
ing. The framework comprises two innovative modules. 
Spatial Transformer: Employs self-attention mechanisms 
to capture directed spatial dependencies between traffic 

network nodes, synthesizing influences from similarity, 
connectivity, and covariance via multi-head attention. 
Temporal Transformer: Utilizes bidirectional self-atten-
tion to model long-range temporal dependencies, bypass-
ing the sequence length limitations of RNNs and enabling 
multi-step parallel prediction to reduce error propagation. 
Experiments on PeMS-BAY and PeMSD7(M) datasets 
[11] demonstrate STTN’s superiority in long-term predic-
tions (≥30 minutes), achieving 15.4% lower mean abso-
lute error (MAE) for 45-minute forecasts compared to ST-
GCN and DCRNN benchmarks, alongside 10–40% higher 
training efficiency than Graph WaveNet. Key advantages 
include dynamic adaptation to traffic patterns via graph 
neural networks; efficient long-range dependency mod-
eling via Transformer architectures. And the limitations 
include spatial attention complexity scales quadratically 
with node count, hindering scalability in large-scale road 
networks; no explicit integration of external factors (e.g., 
weather events) that disrupt traffic patterns.

6. Conclusion
Deep learning-driven intelligent traffic signal control tech-
nologies have provided transformative solutions for urban 
traffic management. Reinforcement learning (RL) enables 
adaptive decision-making across single-intersection to 
multi-intersection systems through dynamic environment 
modeling and online optimization mechanisms, signifi-
cantly enhancing control flexibility in complex scenarios. 
Supervised learning techniques, integrating temporal mod-
eling and cross-modal data fusion, have improved both 
the accuracy and robustness of traffic flow prediction.
While current research has achieved significant progress 
in state representation optimization, multi-objective re-
ward design, and lightweight model deployment, three 
critical challenges remain:
First, the inherent conflict between data quality and re-
al-time requirements: Sensor noise and occlusion artifacts 
frequently degrade model reliability. Second, the trade-
off between local optimization and global coordination: 
Locally optimal decisions may propagate secondary con-
gestion at the network level. Third, limited generalization 
capabilities in extreme scenarios: Existing models strug-
gle to adapt to dynamic disruptions such as accidents or 
sudden traffic surges.
Future efforts should prioritize developing multi-agent 
collaborative architectures, edge-computing-accelerated 
strategies, cross-modal data fusion mechanisms, and fair-
ness guarantees under ethical constraints. These advance-
ments will bridge the gap between experimental validation 
and large-scale deployment of intelligent traffic signal 
systems, offering foundational technological support for 
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building smart urban transportation networks.
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