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The Research Progress on Sensing
Technologies in Lower Limb Exoskeleton
Robot Motion Intent Perception Systems

Abstract:

Haoxiang Zhang Lower limb exoskeleton robots have demonstrated
great potential in the field of medical rehabilitation,

Sl @ Misdhnies] Bttt especially in as.sisting patients.with limited mobility to

Tomi Uit Sihnmgm, recover Iower llrpb motor fupctlons. Thg accuracy of the

200092, China movement intention recognition system is a critical factor

2253294@tongji.edu.cn influencing the control effectiveness of exoskeletons.
Sensor technology plays a crucial role in this system, as
it accurately collects information such as gait phase, joint
angles, and muscle activity, ensuring that the exoskeleton
can adjust its movement strategy in real-time. This study
analyzes the application and development of inertial
measurement units (IMUs), plantar pressure sensors, and
surface electromyography (sEMG) sensors in movement
intention recognition systems. However, issues such
as data synchronization, signal noise, and individual
differences remain, requiring further optimization of
sensor configuration and data processing strategies. Future
research will focus on the introduction of intelligent
compensation algorithms, multi-sensor fusion, and
collaborative sensing, and the optimization of sensor
performance, thereby enhancing the system’s accuracy,
stability, real-time capability, and adaptability, promoting
the widespread application of exoskeleton robots in
rehabilitation training.

Keywords: Sensing technologies; lower limb exoskele-
ton robot; motion intent perception systems.

1. Introduction bility to rehabilitate their lower limb motor skills.

Technology development makes exoskeleton robots
Lower Limb Rehabilitation Exoskeleton (LLE),  pnot only be used for recovery training but also can
for many years, has received considerable attention help elderly people walk and help spinal cord injured
within the sphere of medical recovery, and has been  people to recover function. Giving outside power
largely focused on assisting people with limited mo-  gypport, exoskeletons copy normal walking, which



permits sick people to conquer walking problems and
begin getting themselves up step by step. Exoskeleton ro-
bots, compared with traditional rehabilitation devices, can
be adjusted at any time based on a person’s gait to provide
personalized and accurate rehabilitation training.

The motion sensing system in the lower limb exoskeleton
robot is one of the key parts; it intends to precisely under-
stand the patient’s movement idea, discover gait phases,
and change the action scheme as on the obtained infor-
mation. The accuracy of gait recognition will have a great
impact on the control effect of the exoskeleton, which
will directly affect the efficiency and safety of the whole
rehabilitation training. Accurate motion perception can
help improve trainees’ training effect and can also avoid
accidents leading to pain and injury due to wrong control.

Sensor tech is important for this system. The sensors
collect the patients’ motions, such as the gait phase, joint
angles, muscle activities, and so on. Then the information
is processed in the feedback to the exoskeleton. The sen-
sor performs, which impacts the precision and speed of
response of the sensing system. Using high precision, low
latency sensors, it makes it possible for the exoskeleton to
respond really fast to what the patient is moving, which
allows them to start walking normally again.

The Inertial Measurement Unit (IMU) sensor is the main
sensor people use; it measures how the body moves via its
acceleration and gyroscope and helps it identify the stages
of the step, such as when we’re standing up and swinging.
Plantar pressure sensor monitors the change of pressure
when the feet hit the ground and provides key information
about the change of gait phase. EMG sensors can sense
the electrical activities coming from the muscles of the
body and give such information — the direct muscle move-
ment intentions to the exoskeleton: These sensors working
together allow the lower limb exoskeleton to truly follow
the patient’s changes in gait and have the exoskeleton re-
spond as well in the same way in the moment.

However, there are some difficulties encountered regard-
ing the sensor configuration, like how to choose the right
sensor, make sure that all the data collected is real-time
and accurate, and deal with noise and interference of the
signal. In the future, with the development of technology,
the performance improvement of sensors and the combi-
nation of systems will also provide theoretical grounds for
the improvement and utilization of lower limb exoskele-
tons.

2. Motion Intention Recognition Sys-
tem

2.1 Importance of Motion Intention Recogni-
tion in Exoskeleton Systems

Motion intention recognition is identifying the user’s
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motion intentions based on gait features of the user by
capturing with different sensor systems in real time. In the
lower limb exoskeleton robots, the motion intention rec-
ognition is done such that the exoskeleton system will act
on the movements and be coordinated, and help out for
correct assistance or support to be provided to the users
in an effort to improve the experience and help with gait
recovery or improvement.

Motion intention recognition tech app in exoskeletons is
very necessary. Firstly, accurate motion intention recogni-
tion contributes to the exoskeleton dynamically conform-
ing to the user’s gait pattern and movement necessities.
This will include determining exactly which part of the
walk, and then determining whether to increase the help
that is provided or whether to stop, to avoid wasting ener-
gy, but also to avoid too much support. Secondly, motion
intention recognition can also be personalized for custom-
ization, that is to say, it can give personal assistance based
on the personal physical condition and movement habits
of the person, to achieve maximum comfort and effects.

2.2 Core Tasks of Motion Intention Recognition

Gait pattern recognition mainly deals with recognizing
the different gait types like walking, running, climbing
stairs, and down stairs. The key process is to distinguish
various movement modes and gaits, then choose the cor-
responding exoskeleton assisting mode for each form of
movement. In exoskeleton control systems, gait pattern
recognition usually needs to combine various sensor data,
such as inertial sensors, pressure sensors, etc., to carry out
a comprehensive analysis.

To recognize the phase of gait refers to the process of
identifying the different stages of the gait cycle, such
as the Stance phase and the Swing phase. If it wants to
control the exoskeleton properly, task recognition is very
important. Since each step requires a different way of con-
trol. Similarly to the stance phase, the exoskeleton needs
to support a lot when it comes to the user’s bodyweight
and movement changes, while for the swing phase, the
control system could give less effort in order to simulate
how the normal gait is.

The subdivision of the gait phase commonly comprises
several sub-divisional sub-phases like loading response
LR, mid-stance MST, terminal stance TST, pre-swing
PSW, initial swing ISW, mid-swing MSW, and terminal
swing TSW. Correct phase recognition is important for
switching any stage of the exoskeleton system’s control
strategy to avoid wrong joint torque and to make the gait
look smooth and natural.

State switching, a term for the transitions from one phase
of gait to another. Through constant observation of the
changes in the step, it can then continuously alter its cur-
rent Step. The user transitions from walking to running,
and the exoskeleton control system should change its gait
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phase recognition algorithm according to the new gait
mode. It needs to switch to a set of control strategies com-
patible with the new mode. State switching accuracy and
timely performance greatly influence the exoskeleton’s
response velocity and effectiveness.

Sensors are the basic form of data acquisition, recording
the user’s dynamic information in real time, and giving re-
al-time, accurate information about gait patterns, phases,
and states. Different kinds of sensors, like IMUs, plantar
sensors, and EMG sensors, are all very important for the
recognition of motion intention.

2. Sensor Technologies in Lower Limb
Exoskeletons

Choosing a sensor is important to recognize the exact mo-
tion intentions. The sensing configuration within a lower
limb exoskeleton system has to be able to precisely gauge
the user’s motion state and deliver pertinent data to the
controlling system so as to guarantee the accuracy of gait
recognition. Common types of sensors would be IMU,
plantar pressure, SEMG sensor, and so on.

2.1 Inertial Measurement Unit (IMU)

The Inertial Measurement Unit (IMU) mainly includes
accelerometers and gyroscopes, and is commonly used
in gait recognition by acquiring acceleration and angular
velocity information during movement. The accelerometer
can be used to measure acceleration and therefore capture
the movement of the foot throughout movement. The gy-
roscope measures angular velocity so that it can capture
the body’s rotation through its gait cycle. When those sen-
sors are used at the same time, it’s possible to figure out
all the various stages in the gait cycle and tell about things
like how far someone steps with each step they take, how
fast they walk, and what parts of the gait cycle they’re in.
Bartlett et al. configured the IMU as a 6-axis sensor fixed
on the leg of the participant, mainly measuring the angle
change of the thigh relative to the gravitational direction
[1]. They processed the thigh angle data and used the
phase variable method to represent gait as a phase space
trajectory, extracting features for walking, going up stairs,
and going down stairs. Gait recognition achieved 99.4%
for walking and 100% for ascending stairs.

Liu et al. put forward a scheme that could tell what stage
people were at when they walked and used IMU and
something called HMM. In order to collect participants’
angular velocity signals, researchers applied an IMU sen-
sor made by InvenSense on their toes [2]. For gait phases
division, they used the HMM model to divide the gait
cycle into 4 phases: heel strike, foot flat, heel off, and toe
off. This IMU configuration demonstrated high accuracy
and stability in gait phase recognition in dynamic environ-
ments, with an accuracy rate of 91.88%.

Choi et al. focused on using the Xsens Technologies MTi-
3 AHRS IMU sensor, installed on the front of each par-
ticipant‘s thigh [3]. The sensor recorded the thigh‘s angle
and angular velocity at a sampling frequency of 1 kHz,
collecting both gait and running data. The study optimized
feature selection using a genetic algorithm (BGA) and
determined the optimal time window length (LTW) using
Bayesian optimization (BO). After optimization, the er-
ror in gait estimation decreased from 1.284% to 0.910%,
while the running error reduced from 1.997% to 1.484%.
Fullerton et al. researched how to use multiple body-
worn accelerometers to recognize human activity types
in a free-living environment [4]. Ten participants wore
nine IMU sensors, which were placed on the left and right
ankles, hips, wrists, upper arms, and spine, with a sam-
pling frequency of 10 Hz. The system achieved a 97.6%
accuracy in recognizing major activities, and over 95%
accuracy for 29 sub-activities, including 100% accuracy
for cycling, running, and self-care activities.

In Su et al.‘s study, 12 healthy subjects wore seven
IMUs (Myon/Cometa aktos-T) placed on the thigh, tibia,
foot, and pelvis, with a sampling frequency of 2000 Hz,
post-processed to 50 Hz [5]. The data were used to predict
angular velocities of the lower limb segments (thigh, tibia,
foot) and five gait phases (loading response, single-leg
stance, terminal stance, pre-swing, and swing phase).
Multi-step predictions for 100 ms and 200 ms were
achieved with accuracy rates of 94% and 92%, respective-
ly, with a prediction accuracy of 97% for the swing phase,
making it the most accurate.

Sarshar et al. used two XSENS MTw Awinda three-axis
IMU sensors, installed on both ankles, with a sampling
frequency of 100 Hz [6]. The sensors collected three-di-
mensional angular velocity, rotation matrix size (RotMat),
and free acceleration, which were used as input features
for the model. The LSTM regression model was employed
to predict foot off-ground, mid-swing, and foot contact
phases, achieving an average accuracy of 99.45% on the
test dataset.

Karakish et al. used six IMU sensors, installed on the
front of the thigh, tibia, and foot, to collect accelerometer
and gyroscope data for real-time motion pattern predic-
tion, including walking, running, and ascending stairs,
among other activities [7]. A total of 2,111,962 samples
were generated and trained using MLP and CNN models.
After combining gait phase information, the Root Mean
Square Error (RMSE) decreased to 0.226 deg/s and 0.217
deg/s, demonstrating the advantages of combining IMU
configurations with deep learning models.

2.2 Plantar Pressure Sensors

Plantar pressure sensors, installed in insoles or on the
soles of shoes, can monitor the contact pressure between
the foot and the ground in real-time, helping to identify



the different phases of the gait cycle. And these sensors
will catch important moments when they do the walk, like
stepping on the heel, flat feet, and toes going up. Check
the pressure on different areas like the back of the feet, the
area between the feet, and the tips of the toes. It can tell if
it is the first walking, the second walking, or the third one,
and see what may follow too.

Heng et al. used Multi-walled Carbon Nanotubes
(MWCNTs) and Polydimethylsiloxane (PDMS) to make
a Force Sensing Resistor (FSR) sensor [8]. After laser
surface treatment, the sensor’s resistance has dropped a
lot, and the stability is also quite good. Put sensors at 6
important places on the insole - heel, arch, and toe - to
catch and send out changes in how squishy it feels right
when it happens. From the experiments, it was found that
the FSR sensor had good sensitivity for a 0-25N pressure
range, which was also shown to be a sensitivity of 0.29
N~-1(3.63 MPa”-1). After 5000 cycles of load/unload, it
had good consistency and stability.

Xia et al. combined IMU and FSR data to monitor gait
phases in real-time [9]. The FSR data had a sampling
frequency of 100 Hz, and convolutional neural networks
(CNNs) were used for feature extraction, followed by bi-
directional long short-term memory (BiLSTM) to capture
temporal gait information, and finally a Softmax layer for
classification. The experimental results showed that the
composite model achieved 92.99% accuracy in gait phase
classification, with classification accuracy for the left foot
stance phase reaching 96% and for the right foot stance
phase reaching 97%.

Cheng et al. researched a lower-limb motion intention
recognition method based on multi-source information
fusion, focusing on the use of plantar pressure sensors
to collect six common movement modes: standing, hor-
izontal walking, uphill walking, downhill walking, stair
climbing, and stair descending [10]. Data analysis showed
that when using FSR data for motion mode classification,
support vector machines (SVM) and Bagging methods
could achieve high-accuracy gait pattern recognition. Par-
ticularly, feature extraction from plantar pressure signals
provided important clues for recognition.

2.3 Surface Electromyography (sEMG)

Surface Electromyography (SEMG) directly captures the
electrical activity of muscles, providing more accurate
motion intention data for gait recognition. SEMG signals
offer millisecond-level control precision, making them
particularly valuable in exoskeleton control systems for
real-time motion adjustments. Due to its non-invasive na-
ture and ease of installation, sSEMG has found wide appli-
cation in practical settings.

Guo et al. used six SEMG signal acquisition systems and
collected signals from the gastrocnemius, tibialis anterior,
biceps femoris, rectus femoris, vastus medialis, and vastus
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lateralis muscles using Biometrics wireless multi-channel
signal acquisition equipment [11]. The gait phases in the
experiment included heel strike (HS), foot flat (FF), toe
off (HO), and swing (SW). By combining the Long Short-
Term Memory (LSTM) model, they achieved a classifica-
tion accuracy of 91.44%.

Yuan et al. used a 16-channel wireless SEMG signal ac-
quisition system, with four channels collecting SEMG sig-
nals from the quadriceps, biceps femoris, gastrocnemius,
and tibialis anterior muscles of the left leg [12]. Healthy
male volunteers walked at different speeds (1.5 km/h, 2.0
km/h, and 2.5 km/h), while gait data were collected using
the SIAT lower limb exoskeleton robot in a zero-torque
mode. The LSTM model took these four sSEMG signals as
input, with the output being two gait phases: stance (ST)
and swing (SW). The model‘s classification accuracy was
97.61% at 1.5 km/h, 97.89% at 2.0 km/h, and 97.75% at
2.5 km/h.

Cai et al. conducted experiments with 10 healthy subjects
wearing eight SEMG sensors, placed on the thigh, semi-
tendinosus, lateral gastrocnemius, and medial gastrocne-
mius muscles. They used the LDA-PSO-LSTM algorithm
for multi-phase gait recognition. The results show that the
LDA-PSO-LSTM model achieves 94.89% at 2.5km/h and
93.80% at 3.0km/h. The lower-limb exoskeleton robot can
successfully recognize the motion intention with the effec-
tive processing of the EMG signal and the optimization of
the model.

3. Challenges

3.1 Sensor Data Fusion and Synchronization
Issues

For the enhancement of gait recognition’s precision, lots
of studies utilized multi-sensor fusion; SEMG signal was
combined with IMU sensor (accelerometer and gyro-
scope), or in combination with plantar pressure sensors.
This kind of configuration can provide more thorough
data support, but it brings about certain difficulties too,
especially the problems with synchronizing data. For ex-
ample, the sampling frequency of IMUs is usually 100Hz,
but the sampling frequency of SEMG is often higher, such
as 1000 Hz. Therefore, the synchronization when fusing
data must be precise, otherwise it will affect the accuracy
of gait classification.

For example, in Yuan et al, the data synchronization of
the SEMG signals with optical motion capturing systems
like Vicon was an issue. Since the SEMG signal had a
sampling frequency of 1000Hz and the Vicon system a
sampling frequency of 100Hz, it was necessary to create
16 sSEMG data points for each Vicon data point [11]. Then
this temporal alignment error was carried forward into a
wrong division of gait phases.
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3.2 Signal Noise and Interference

IMU signals have always been affected by several factors
like where the sensor was put, how it moved on the body,
problems when the sensor touched the skin, and stuff like
electromagnetic interference. Disturbances and noise
can lead to fluctuations in the acquired signals, which
would affect the next step of gait recognition and phase
prediction. Sarshar et al utilized IMU signals for their
gait phase estimation [7]. Though it used an IMU sensor
with high precision, with a sampling rate of 100 Hz, still
a lot of noise was present in those signals because of the
placement of the IMU device on the body and connecting
it to the circuit. This kind of noise will impact the correct
segmentation of the gait phase. Second is high-frequency
noise, usually caused by vibration of sensors and electro-
magnetic interference from the outside.

In reality, there are lots of issues that would interfere with
sEMG signals, like sensor noise, motion artifact, elec-
trode/skin interface issues, and crosstalk. This could cause
the emergence of unstable SEMG signals, thereby affect-
ing the accuracy of the gait recognition.

Speaking particularly of Cai et al.’s work, the SEMG sig-
nal possessed a 1000Hz sampling frequency and utilized
a Butterworth filter to eliminate S0Hz power frequency
noise [13]. db4wavelet was used for thresholding noise re-
duction, where high-frequency noise is reduced in the sig-
nal. Although it implemented the denoising process, there
is still some interference with the signal, which impacts
the gait recognition results, as there is a reduction in the
gait recognition in class accuracy during the gait transition

3.3 Individual Differences and Adaptability Is-
sues

Because people might have slightly different builds, dif-
ferent ways of walking, and different body movement
patterns, even if people use the same type of sensor, they
might see different results. In Su et al’s paper, it was
demonstrated that for 10 healthy individuals, gait data
resulted in LSTM model accuracies that significantly dif-
fered between each individual, with a maximum of 97.6%
and a minimum of 92.0% [10]. This means an individu-
al’s difference can have an influence on how accurately a
system like gait recognition can work, and getting around
this might need customising models for different people or
gathering more data.

Each user‘s gait signals have quite different signal patterns
and amplitudes. Personalized training of the system and
adjustments are necessary. In Guo et al. EMG Gait Clas-
sification, due to different body weights and heights, there
were differences in the amplitude and feature extraction
of the gait signals; the result show that when the height
difference exceeds Scm or the weight difference is more
than Skg, the gait recognition accuracy of the participant

is reduced [10].

3.4 System Stability and Long-term Reliability

Regarding multi-sensor systems, among which the IMU
is one of the most used sensors, it faces issues of signal
drift and sensor calibration over long periods of use. Mar-
cos Mazon et al mentioned that when using two IMUs
(placed on the upper and lower legs) for gait recognition,
although the system‘s F1 score was as high as 0.92 + 0.01,
the accuracy of gait classification decreased over time due
to errors and drift in the IMUs [14]. In another study by
Marcos Mazon et al., which involved long-term gait rec-
ognition, the classification accuracy of IMUs and pressure
sensors was initially high, but over time, sensor data drift
and changes in sensor placement led to performance fluc-
tuations [14].

3.5 Real-time Performance and Computational
Complexity

In lower limb exoskeleton robot systems, real-time perfor-
mance is a critical requirement. The model must process
data and provide feedback in an extremely short amount
of time. However, LSTM and CNN models often require
longer computation times, especially when dealing with
large data volumes. In Su et al.‘s study, they pointed out
that when using an LSTM model, the processing time
for gait recognition was 2.4 ms, but as the data volume
increased or more complex neural networks were used,
the processing time could significantly increase, leading
to delays [10]. For CNN models, the execution time for
real-time gait classification could be as high as 142 ms,
which, for real-time feedback systems, could negatively
impact the system‘s response speed and user experience.

4. Future Development Directions

4.1 Sensor Self-calibration and Intelligent Com-
pensation

Su et al. introduced a weighted loss function in the LSTM
network that reduces the weight of long-term predictions
to enhance the accuracy of short-term predictions [10].
This allows the system to maintain high accuracy even
in long-duration prediction tasks. Research has shown
that after introducing intelligent compensation, the error
(RMSE) of prediction results significantly decreases,
especially during the transition between the swing and
stance phases of gait. Compensation techniques can effec-
tively reduce errors caused by noise.

Plantar pressure sensors (FSR) are prone to signal drift
and poor contact issues over long-term use. Heng et al.
mentioned that using laser-treated conductive rubber sen-
sors can effectively reduce surface resistance fluctuations,
thus improving sensor stability and minimizing the impact



of drift on data [4]. Experimental data showed that after
laser treatment, the sensor’s maximum resistance de-
creased from 215 kQ to 1.78 kQ, and the resistance fluctu-
ation decreased from 13.49% to 0.51%, indicating that the
sensors stability during long-term use was significantly
improved.

Xia et al. also proposed using machine learning algo-
rithms for data fusion and compensation [6]. Gait classify-
ing in gait classification tasks, the CNN-BiLSTM network
model is capable enough to classifying gait phases by
extracting local features and making use of their temporal
information. According to the experimental results, this
model can reach a maximum accuracy of 95%, which is
about Gait phase Classification. Besides, the average ac-
curacy of CNN-BiLSTM is 0.417% higher than LSTM,
and 0.596% higher than GRU. This shows that an intel-
ligent compensation algorithm is able to compensate for
errors that exist in individual sensor signals and improve
the accuracy of the system’s classifier.

Cai et al. propose an intelligent reward method based on
LSTM + PSO [9]. Gait phase recognition, LSTM learns
the long-term relationships based on the current and his-
torical signals, and PSO can also optimize the LSTM
network structure and make more accurate gait phase
classification. From experimental results, the gait phase
classification accuracy can maintain a stable accuracy rate
greater than 94.89% after applying this strategy.

4.2 Multi-sensor Fusion and Collaborative
Sensing

Cheng et al. The Beckhoff module was used to develop
a multi-channel sensor information acquisition system in
one study that could collect information from many sen-
sors at once [14]. sSEMG signals were used to reflect mus-
cle electrical activity, IMU signals provided acceleration
and angular velocity data, and plantar pressure sensors
captured changes in pressure during foot contact in the
gait cycle. This resulted in a 280-dimensional feature vec-
tor (SEMG: 120 dimensions, IMU: 144 dimensions, plan-
tar pressure: 16 dimensions), which was normalized to
reduce the impact of different feature contributions on the
results. By using different fusion strategies, such as single
fusion, multi-modal switching, and multi-modal hybrid
strategies, the system fused data from different sensors to
enhance the recognition of lower limb movement patterns.
This approach achieved higher recognition rates, particu-
larly in identifying complex gait phases, such as the tran-
sition between the stance and swing phases.

Cai et al. used eight sEMG sensors to record lower
limb muscle activity and combined this data with eight
NOKOYV motion capture cameras and four reflective
markers to record key events in the gait cycle [15]. They
employed an LDA-PSO-LSTM model for feature dimen-
sionality reduction, transforming the original high-dimen-

Dean&Francis

HAOXIANG ZHANG

sional data into a 6-dimensional feature space. Experimen-
tal results showed that at a walking speed of 2.5 km/h, the
average recognition accuracy of the model was 94.89%,
and at 3.0 km/h, the accuracy was 93.80%.

4.3 Miniaturization and Low Power Design of
Sensors

The convenience and comfort of lower limb exoskeleton
robot systems are closely related to the size and power
consumption of sensors. Future sensors need to be more
compact, allowing for flexible placement on the exoskel-
eton device. At the same time, low-power sensor designs
will help extend battery life, which remains a significant
challenge, especially in wearable devices. To improve
the real-time performance and long-term stability of mo-
tion intention recognition, researchers need to develop
low-power, high-precision sensor technologies that can
operate for extended periods without sacrificing perfor-
mance.

4.4 Development of Environmentally Adaptive
Sensors

In the future, low limb exoskeleton robots need to work
in many different environments, such as indoor, outdoor,
and uneven roads. To do this, sensors need to be able to
work in complex environments. They must have good en-
vironmental adaptability. Take a plantar pressure sensor as
an example, it needs not just to detect gait phase but also
needs to be correct on different surfaces (dirt, grass, stairs,
etc.). Sensors should make themselves fit in with the dif-
ferent environments and change their working parameters
according to the change of environment.

5. Conclusion

Lower limb exoskeleton robots’ development in motion
intention recognition systems has progressed quickly, and
sensor technology holds a central place in it, being broad-
ly adopted by gait recognition and motion intention per-
ception. This paper discusses the applications and prob-
lems of various sensing technologies such as IMUSensors,
Plantar Pressure Sensors, and sSEMG sensors, looking at
them from many different points of view.

IMUs are a familiar type of sensor that can accurately ob-
tain acceleration and angular velocity data; they are also
easily influenced by vibrations and drift, and the like, thus
affecting the accuracy of gait recognition. Plantar pressure
sensors can sense changes in foot pressure to tell which
parts of the step a person is taking, but these changes can
be changed by how things around them feel and where
on the foot the plantar pressure sensors are placed. EMG
signals and EEG signals, these things can be quite more
precise in giving off data about someone’s intentions for
moving around based on muscle electrical activity and



Dean&Francis

ISSN 2959-6157

brain electrical activity. However, these signals will be af-
fected by noise and disturbance, which leads to unstable.
The technology gets better, and it must use multi-sensor
fusing for increasing gait recognition correctness and
system stability. Incorporating data from the IMUs, PLPs,
sEMGgs, other sensors, etc., allows the weakness of one
sensor to be compensated and provides a better result for
a motion intent. But, as for synchronizing the sensors and
improving on the fusion algorithms and making the sys-
tem even more complex, there still needs to be dealt with.
As for future research, it will focus on how to make better
use of the sensors, improve data fusion technology, over-
come individual differences and environmental influences,
and break through real-time performance, low power con-
sumption, and self-calibration technology. These advance-
ments will drive the widespread application of lower limb
exoskeleton technology in medical rehabilitation, walking
assistance for the elderly, and other fields.
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