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Abstract:

Within the disciplines of computer vision and deep
learning, the ability to construct 3D models from data
has become a fundamental capability. A recent wave
of progress has significantly advanced the two leading
methods for scene representation:Neural Radiance
Fields for implicit modeling and 3D Gaussian Splatting
for explicit construction. This review aims to build a
systematic cognitive framework of 3D reconstruction
technology for readers by comparing the performance
of these two technologies and their variants in static
and dynamic scenes. This review selects representative
evaluation parameters such as Peak Signal-to-Noise Ratio.
By collecting experimental data from public datasets, it
compares, organizes and summarizes the high-quality
rendering ability of neural radiance field technology for
geometric details and the high-speed real-time rendering
ability of 3D Gaussian splatting. Looking ahead, this
paper proposes key development directions such as the
integration of expression paradigms and overcoming the
slow speed of implicit expression, hoping to provide a
structural knowledge framework and research inspiration
for the professional field.

Keywords: Neural Radiance Fields, 3D Gaussian Splat-
ting method, Representation Paradigm, Frames Per Sec-
ond

1. Introduction

transitioning from conventional techniques like
Structure from Motion that are based on geometric

Recently, cutting - edge technologies such as virtual
reality, autonomous driving, and the metaverse have
witnessed rapid development. The 3D reconstruction
technology, which reconstructs objects in the 3D
world from 2D data, has become the core driving
force behind these technologies. 3D reconstruction
technology has undergone a staged advancement,

principles and manual features, to the age of deep
learning propelled by data[1]. To systematically sort
out the development context of 3D reconstruction in
the era of deep learning, this review takes the "rep-
resentation paradigm® as the core logical framework
for discussion, and conducts in - depth research and
analysis on the performance of their respective repre-
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sentative technologies in different scenarios.

The Neural Radiance Field technique uses a multi-layer
perceptron to create an implicit scene representation. The
final image is then synthesized by volume rendering the
network‘s predicted color and density along camera rays
[2].This principle enables it to generate high - quality
novel view images, and it is mainly applied in high - fi-
delity novel view synthesis, implicit 3D reconstruction,
as well as in virtual reality and film production. Different
from NeRF‘s implicit representation, Three-dimensional
Gaussian splashing is a representative of display expres-
sion paradigms, describing the scene through millions of
3D Gaussian points with well - defined attributes. During
the rendering phase, Gaussian points are projected onto
the image plane and subsequently composited. The 3DGS
technique demonstrates significant promise for real-time
applications, facilitating a substantial increase in frame
rate while preserving high visual quality. Its performance
makes the technology ideal for interactive uses like VR/
AR platforms, game engines, and web-based 3D viewers.
The primary contributions of this review are outlined as
follows: To begin, this paper presents a structured frame-
work for comprehending the technology of three-dimen-
sional cognitive reconstruction.Second, this review uses
different benchmark datasets and evaluation indicators
to summarize and compare the performance of different
methods in different scenarios. Finally, the future develop-
ment of this technology field is prospected[3].

2. Three-dimensional reconstruction
methods and the development of their
variants

2.1 Three-dimensional reconstruction technol-
ogy based on implicit representation — Neural
Radiance Fields

In 2020, Ben’s team pioneered the foundational Neural
Radiance Field (NeRF) to generate realistic new views
from a limited set of images by conceptualizing scenes as
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continuous volumetric fields [4]. To model a stationary
environment, NeRF relies on a Multi-Layer Perceptron
to approximate a continuous 5D function. This function
takes a 3D coordinate and a viewing angle as inputs to
generate the scene’s volumetric density and direction-de-
pendent color at that point. To render an image, rays are
cast from the camera’s viewpoint. The rendering process
for each ray involves sampling points along its trajectory.
The network then processes the 5D coordinates of these
points to yield a color and density for each. Applying stan-
dard volume rendering principles, these individual outputs
are integrated along the ray’s path. The ultimate color of a
pixel is determined by the integral formula that follows:

C(r) = j’ T(6)o(r())e(r(r),d)dt

The term 7'(¢) signifies the transmittance, which is the
accumulated probability of the ray traveling from the near
bound 7, to the point ; without being occluded. Its value

is computed with the subsequent formula:

T(t) = exp (— j O'(r(s))ds)

To enable the model to capture fine, high-frequency de-
tails, a crucial step is the application of positional encod-
ing, which transforms the raw input coordinates. The stan-
dard approach for this encoding involves mapping inputs
from a low-dimensional space into a higher-dimensional
one. As an illustration, a single component of a coordinate
can be represented as follows:

y(p) = ( ..,sin(2“ 7z p),cos(2* 7 p),.. ):J

NeRF‘s novel method for view synthesis uses a simple
MLP to create detailed, implicit 3D models, surpassing
prior techniques. Despite its superior results, the approach
is hindered by extremely slow training and rendering
speeds and significant memory requirements. Figure 1 il-
lustrates this fundamental concept, referencing the official
developers* work.
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Fig 1. Schematic diagram of the basic principle of NeRF technology

2.1.1 NeRF 3D reconstruction of static scenes

To address the slow processing of static environments in
conventional NeRF, Alex Yu and colleagues introduced

2

PlenOctrees [5]. This method utilizes octree precompu-
tation to enable real-time rendering, effectively resolving
the performance bottleneck of earlier approaches.PlenOc-
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trees shows that significant acceleration can be achieved
by “baking” implicit NeRF into an explicit hierarchical
data structure.

Speed is crucial, but the ultimate goal is photo-realistic
rendering. To improve the rendering quality and an-
ti-aliasing of static scenes, Mip-NeRF was developed by
Jonathan T. Barron et al. in 2021 [6]. This technology
solves the problem of jagged artifacts in grid-based NeRF
acceleration methods (such as Instant-NGP).

During the development of NeRF, the memory required
to store large or detailed scene models has become a sig-
nificant bottleneck. In 2022, Thomas Miiller et al. used a
multi-resolution structure to eliminate hash collisions as
much as possible, and the entire system was implement-
ed with highly optimized and fully fused CUDA cores to
minimize memory bandwidth and computational opera-
tions [7]. This enables high-quality NeRF training to be
completed within seconds and rendering within tens of
milliseconds.

2.1.2 NeRF 3D reconstruction of dynamic scenes

However, considering the need to more accurately capture
common non-rigid motions and even topological changes
in the real world, researchers have proposed a series of
more complex dynamic NeRF models. In 2021, Tretschk,
E. and his team proposed NR - NeRF [8], which solved
the technical problem of reconstructing and synthesizing
new views of scenes with general non - rigid deformations
from monocular videos and improved the constraints on
the rigid regions of the scene.

In 2021, Park, K. et al. proposed HyperNeRF, which el-
evated NeRF to a higher - dimensional ,,hyperspace“[9].
Within this hyperspace, the 5D light representation of
each input image is treated as a distinct cross-section. This
framework accommodates topological changes in shape
by simply moving the cross-section. Warping this slice
also enables the generation of a more detailed template.
Regarding the 3D reconstruction of the human form, ap-
proaches such as Animatable NeRF yield positional inac-
curacies in points and generate visual artifacts in details
when managing significant non-rigid bodily transforma-
tions. In 2023, Xie introduced Deform2NeRF, a model
that advances the Animatable NeRF framework [10]. It
integrates a network dedicated to modeling non-rigid de-
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formations with a module that fuses features from both
2D and 3D domains. The deformation component is spe-
cifically tasked with rectifying point location errors that
arise from substantial non-rigid motion.Concurrently, the
feature fusion module employs a cross-attention mecha-
nism to pull features from various image perspectives and
combine them with 3D data, thereby diminishing artifacts
and ameliorating view inconsistency.

2.2 Three-dimensional reconstruction technolo-
gy based on explicit representation — Three-di-
mensional Gaussian splatting

As a solution to the performance limitations of Neural Ra-
diance Fields, Kerbl and his team introduced an approach
in 2023 called 3D Gaussian Splatting [11]. This technique
fundamentally changes the scene model, moving from
a continuous implicit field to a collection of discrete,
explicit 3D Gaussians. This shift enables photorealistic
rendering at real-time frame rates. The core idea behind
this technique is the parameterization of each individual
Gaussian. Every Gaussian is made of its 3D location #
,its shape and orientation via a covariance matrix X , its
transparency level & , and its appearance, which is repre-
sented by spherical harmonics to handle view-dependent
color effects. During rendering, a differentiable rasterizer
projects these Gaussians onto the 2D screen and performs
alpha blending after sorting them by depth. The final color
value for any given pixel, denoted as C, is derived from
the summation formula that follows:

C= icla’iHj =1"'(1-a})
i=1

The differentiable property of this formula is the corner-
stone of optimization, enabling the system to directly
adjust all Gaussian parameters through gradient descent.
Combined with the strategy of adaptively adding and re-
moving Gaussian functions, it can efficiently reproduce
fine scene details. In order to establish a more systematic
cognitive framework for three-dimensional reconstruction,
this review refers to the official website of 3DGS technol-
ogy developers and provides readers with a block diagram
of the 3DGS technology principle, as shown in Figure 2.
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Fig 2. Linear block diagram of the principle of 3DGS technology
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2.2.1 3DGS three-dimensional reconstruction of static
scenes

For very large-scale static scenes or higher resolutions,
CityGS developed by Liu in 2024 adopts A method of
breaking down problems and training them individu-
ally[12]. Guided by global priors to achieve seamless
fusion, it further improves the rendering speed. Beyond
the pursuit of rendering speed, in 2023, Chen et al. used a
two-pass deferred shading method to improve the visual
fidelity of 3DGS for scenes such as specular reflection or
complex lighting in static scenes [13], further enhancing
the general applicability of 3DGS.

The large memory and storage requirements of 3DGS due
to a large number of Gaussian functions and their prop-
erties have always been a core issue in the development
of 3DGS technology. Lee and his team mainly adopted
two strategies to achieve a compact 3D Gaussian splatting
technology[14]. One is the learnable mask strategy, and
the other is to use a grid-based neural field representation
and learn the codebook of geometric attributes through
vector quantization to compress Gaussian attributes. This
achieves significant compression while maintaining qual-
ity, making 3DGS more practical for applications with
limited storage or for network transmission.

2.2.2 3DGS 3D reconstruction of dynamic scenes

To address the dual challenges of achieving interactive
rendering for dynamic scenes and maintaining efficiency
in training and storage, researchers sought to overcome
the per-frame modeling limitations inherent in 3DGS.
This led to a swift expansion of research into the temporal
domain, culminating in the development of 4DGS and a
family of related variants.

In 2024, Wu's team extended 3D Gaussians to 4D Gauss-
ian primitives, directly modeling the spatio - temporal vol-
ume [15]. Each 4D Gaussian has explicit spatio - temporal
geometry and appearance features. By learning these 4D
Gaussians to fit the underlying spatio - temporal volume,
relevant information in space and time can be captured.
The initial 4DGS method, although faster, usually in-
volves more parameters, posing new challenges in terms
of storage and training data requirements.

To achieve rapid reconstruction and real - time rendering
of dynamic scenes, especially to explicitly model the attri-
butes of each Gaussian point under monocular and multi
- view video inputs, Lin proposed a dual - domain defor-
mation model to explicitly model the deformation of each
Gaussian point‘s attributes [16]. The compact dynamic
representation of this method reduces the computational
cost of the deformation model and introduces an adaptive
timestamp scaling technique to avoid overfitting to frames
with drastic motion.

In addition to basic motion and deformation, like NeRF,
3DGS technology is also constantly exploring how to rep-
resent more complex dynamic phenomena, such as chang-
es in the topological structure of objects and applications
in vast large - scale scenes. To overcome the challenge of
precisely reconstructing and tracking dynamic surfaces
with 3D Gaussians amidst complex topological changes,
Zheng and his team proposed GauSTAR in 2025 [17].
The representation of dynamic objects is achieved in this
method by linking Gaussian functions directly to corre-
sponding mesh patches. To achieve surfaces with consis-
tent topology, GauSTAR preserves the mesh structure and
follows its movement using Gaussians. GauSTAR accom-
modates topological alterations by adaptively disassociat-
ing Gaussian distributions from the mesh in the affected
regions. This unbinding strategy allows for the subsequent
creation of new surface geometry and precise registration,
all of which are based on the resulting optimized Gauss-
ians.

3. Performance experiment of 3D re-
construction methods

3.1 Dataset

The development and evaluation of 3D reconstruction
technology largely depend on high - quality and diverse
datasets. Early object - centered datasets under controlled
conditions (such as DTU) helped establish the baseline
capabilities of NeRF and 3DGS. Subsequently, more com-
plex and realistic real - world datasets (such as Tanks and
Temples, LLFF, KITTI - 360, Waymo) have driven these
technologies to address challenges such as scalability,
robustness to imperfect data, dynamic elements, and light-
ing changes. To facilitate a more specific performance
comparison of methods in static and dynamic scenarios,
this review selects representative datasets. A subsequent
analysis is then conducted to compile and assess how each
approach performs on these selected datasets.

Local Light Field Fusion Dataset:

The LLFF dataset provides a key evaluation platform for
NeRF and 3DGS models focused on synthesizing nov-
el views. It is composed of forward-facing, real-world
scenes and is specifically used to assess model perfor-
mance under less-than-ideal, handheld capture conditions.
It contains 24 real forward - facing scenes, captured by
hand - held mobile phones (image resolution: 1008x756),
and the poses are estimated using COLMAP.

Mip - NeRF 360 Dataset:

The Mip-NeRF 360 dataset acts as a benchmark for
NeRF and 3DGS applications in synthesizing novel views



for unbounded scenes. It was developed to handle ,,in-
side-out™ capture scenarios, where cameras point in vari-
ous directions and content exists at arbitrary distances, a
challenge for conventional NeRFs. This dataset includes
nine complex indoor and outdoor scenes, all featuring
360-degree photography around a central point with de-
tailed backgrounds. To evaluate and improve how models
handle expansive, intricate real-world environments, the
dataset incorporates several key techniques. These include
non-linear parameterization for the scene, online knowl-
edge distillation, and a regularization strategy based on
distortion.

Waymo Open Dataset:

As a large-scale, high-quality, multi-modal sensor re-
source, the Waymo Open Dataset is extensively utilized
within the autonomous driving field. Collected by Way-
mo°s self-driving vehicles across varied urban and sub-
urban settings, it encompasses a range of lighting and
weather conditions. The dataset is structured into three
parts—perception, motion, and end-to-end driving,and
delivers high-resolution, synchronized LiDAR and cam-
era data, sensor calibrations, and vehicle pose details.
It includes fine-grained object annotations for vehicles,
pedestrians, cyclists, and traffic signs, offering robust data
support for evaluating and training autonomous systems
on tasks like 3D object detection, motion prediction, se-
mantic segmentation, and behavior forecasting..

KITTI / KITTI - 360 Dataset:

It is also a dataset widely used in the field of autonomous
driving, providing outdoor driving scene sequences con-
taining dynamic elements such as vehicles and pedestri-
ans. KITTI - 360 further provides more comprehensive
360 - degree sensor data for evaluating the reconstruction,
dynamic scene processing, and semantic understanding
capabilities in large - scale outdoor environments.

3.2 Reference indicators

To assess the comparative advantages of several methods,
this study applies key quantitative indicators. These are
used to numerically illustrate the results achieved by each
approach across multiple data collections. The following
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key indicators were selected to guide this evaluation:
Peak Signal-to-Noise Ratio: It is an established method
for assessing the quality of a generated image by measur-
ing its deviation from a perfect reference. The underlying
calculation determines the average of the squared intensity
differences, pixel by pixel, between the synthesized out-
put and its corresponding “ground truth” target. The final
value, expressed in decibels, is often used as a proxy for
quality, where higher numbers suggest a better result.
Structural Similarity Index : As a metric designed to
better align with human visual assessment,it offers an al-
ternative to traditional methods like PSNR [18]. Its core
methodology is a composite analysis based on three key
image attributes: overall illumination, dynamic range, and
the inter-dependencies between pixels. The output is an
index scaled from 0 to 1, where a higher value signifies a
closer perceptual match between the two images.
Learned Perceptual Image Patch Similarity: To capture
human-like judgments of image similarity, LPIPS metric
was developed. This approach leverages the internal rep-
resentations of neural networks that have been extensively
trained on vast image datasets. By comparing these deep
features, it offers a measure of perceptual distance.
Frames Per Second: It is a standard indicator used to
measure rendering performance and speed. FPS represents
the number of image frames that a graphics system or 3D
model can generate and output per second. This value
is the reciprocal of the time required to render a single
frame. In the fields of 3D reconstruction and real-time
graphics, FPS is the core standard for evaluating whether
a method can achieve real-time interactive applications
(such as games and virtual reality). A higher FPS value
means smoother and more immediate visual feedback.

3.3 Performance comparison of static scenes

This review assesses how various 3D reconstruction tech-
niques perform in non-dynamic environments by examin-
ing key metrics: PSNR, SSIM, LPIPS, and FPS. The com-
parison draws upon data from multiple NeRF and 3DGS-
based models tested on the Mip-NeRF dataset, with a
summary of these findings presented in Table 1.

Table 1.Performance metrics of NeRF and 3DGS methods on Mip-NeRF 360 datasets

Methods PSNR1 SSIM?1 LPIPS| FPSt
BakedSDF[19] 24.51 0.697 0.309 539
3DGS [3] 27.20 0.815 0.214 251
Zip-NeRF[6] 28.54 0.836 0.177 0.25
K-Buffers[20] 29.19 0.859 0.126 N/A

Table 1 offers a comparative analysis of different tech-

niques, with all results generated using the Mip-NeRF
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360 benchmark. This benchmark is specifically tailored to
evaluate the generation of new viewpoints within large-
scale, stationary environments. From the compiled data,
K-Buffers emerges as the leading method across every
quality metric, demonstrating exceptional results that
PSNR is 29.19, SSIM is 0.859, and LPIPS is 0.126. These
scores position it as a top-tier solution for reconstructing
static scenes with high fidelity.Zip - NeRF also demon-
strates top - notch rendering quality, but its rendering
speed is only 0.25 FPS, indicating that it focuses more on
offline high - precision synthesis. When balancing render-
ing speed against visual quality, approaches based on 3D
Gaussian Splatting exhibit a notable advantage. The orig-
inal 3DGS achieves an extremely high rendering speed
(251 FPS) while maintaining a highly competitive ren-

dering quality (PSNR > 27). In sharp contrast, BakedSDF
sacrifices some image quality to achieve the highest
rendering speed of 539 FPS. Overall, for static scenes,
although K - Buffers and Zip - NeRF reach the peak in
terms of quality, 3DGS and its variants (such as SMERF)
show great advantages and potential in achieving real -
time, high - quality rendering.

3.4 Performance comparison of dynamic sce-
narios

For the evaluation of techniques in dynamic contexts, this
review leverages performance data from the KITTI/KITTI
360 benchmark. Table 2 summarizes the quantitative find-
ings from this comparative study.

Table 2. Performance metrics of NeRF and 3DGS methods on KITTI/KITTI-360 datasets

Methods PSNR1 SSIM?1 LPIPS| FPSt
3DGS[3] 19.54 0.776 0.224 125
SplatFlow[21] 28.32 0.932 0.089 44
MVSNeRF [22] 18.44 0.638 0.317 0.025
EVolSplat [23] 23.26 0.797 0.179 83.81

Table 2 presents a performance assessment for several
methods tested on the large-scale, dynamic autonomous
driving scenarios provided by KITTI/KITTI-360.Due to
the complexity of the scenarios, the overall metric scores
are generally lower than those in static scenarios. Among
these methods, the Gaussian Splatting variant specifically
designed for dynamic scenarios performs the best. Splat-
Flow achieved the best results in the perceptual metrics
LPIPS (0.089) and SSIM (0.932), which demonstrates the
effectiveness of explicitly modeling scene dynamics.It is
worth noting that although the unmodified 3DGS achieves
the fastest rendering speed of 125 FPS, its rendering qual-
ity (PSNR 19.54) drops significantly compared to other
dynamic methods, highlighting the limitations of the basic
model in handling dynamic elements. On the other hand,
NeRF-based method such as MVSNeRF has extremely
low rendering speeds and are not feasible for real-time
applications. Operating at 83.81 FPS, EVolSplat strikes
an effective equilibrium between the quality of the final
image and the rate at which it is rendered. In conclusion,
for the challenge of reconstructing scenes with motion,
the most advanced solutions currently available are based
on the Gaussian Splatting framework. The leading edge in
this research area is represented by approaches like Splat-
Flow, which integrate either temporal data or optical flow
estimation..

4. Conclusion

This review systematically reviews the domain of 3D
reconstruction, focusing on its two most influential con-
temporary methods: the implicit modeling paradigm of
neural radiance fields and the explicit representation of-
fered by 3D Gaussian splatting.A central finding of this
work is that the paradigm shift from implicit neural repre-
sentations to explicit Gaussian-based methods constitutes
a major breakthrough, enabling photorealistic rendering
at interactive speeds. When evaluated in both static and
dynamic contexts, 3DGS and its derivatives demonstrate
clear superiority in terms of visual fidelity and processing
speed. For modeling complex dynamic scenes, 4DGS
derivative methods that incorporate temporal information
or motion priors represent the current state-of-the-art.
Nevertheless, NeRF maintains its strength in rendering
with ultra-high geometric detail. A key challenge for
implicit 3D reconstruction is to continuously improve
NeRF’s rendering speed to achieve real-time performance.
Looking forward, this review believes that the develop-
ment of efficient hybrid models is the future direction of
work. High-fidelity 3D reconstruction coupled with rapid
rendering is attainable by merging the continuous nature
of implicit representations with the performance benefits
of explicit structures. Secondly, the real - time interaction
ability of 3D reconstruction technology can be enhanced
to further expand the technology from basic reconstruc-



tion to content creation and other aspects.
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