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A review of 3D reconstruction methods
based on deep learning

Abstract:

3D reconstruction is a technical process that constructs a
digital 3D model of a target object from low-dimensional
data. It plays an important role in medical imaging,
cultural relics protection and other fields.Traditional 3D
reconstruction techniques suffer from challenges such as
difficult feature extraction and heavy manual intervention.
Therefore, deep learning has been introduced into this field.
After extensive literature review, this paper systematically
summarizes classic 3D reconstruction algorithms using
deep learning methods, categorizing them into explicit
and implicit representation approaches. As cutting-edge
technologies in 3D reconstruction, Neural Radiance Fields
(NeRF) and 3D Gaussian Splatting (3DGS) hold significant
promise. This paper briefly introduces the fundamental
principles and recent advancements of dynamic scenes,
outlines commonly used dynamic scene datasets and
performance metrics, and compares their performance on
the D-NeRF datasets. It concludes by summarizing the
main challenges in 3D reconstruction and looks ahead
to future developments in technology integration and
reducing memory costs for large-scale scenes.
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categorized into traditional 3D reconstruction tech-
niques and deep learning-based 3D reconstruction
techniques based on core principles. Traditional 3D
reconstruction methods are designed based on geo-
metric, optical, and optimization theories, relying
on physical models without the need for training

1. Introduction

As a core technology in computer vision and com-
puter graphics fields, 3D reconstruction primarily
aims to transform low-dimensional data into comput-
er-processable, analyzable, and renderable 3D digital

models. With the continuous development of deep
learning, 3D reconstruction technology has gradually
become an indispensable part of medical imaging ,
cultural heritage protection , virtual reality, autono-
mous driving and robotics.

Currently, 3D reconstruction technology can be
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data. Traditional methods that use the Multi-View
Geometry (MVG) principle struggle with feature
extraction [1]. In order to enhance automation and
seemingly improve the accuracy of feature extraction
and matching, researchers have, within this broader
analytical framework, introduced what tends to be



deep learning into what appears to be this field.

Previous studies have been carried out on 3d reconstruc-
tion technology based on deep learning. According to the
difference between explicit and implicit representation,
this paper divides typical 3D reconstruction methods into
explicit and implicit methods. With the rapid development
of autonomous driving and augmented reality, there is a
growing demand for real-time dynamic scene reconstruc-
tion. Previous 3D reconstruction techniques are well-es-
tablished and excel in static scenes, but their application
to dynamic scenes is still in its infancy. NeRF and 3DGS,
as cutting-edge technologies in 3D reconstruction, warrant
further research and summarization [2,3]. Therefore, this
paper summarizes and compares the methods of extending
NeRF and 3DGS in dynamic scenes. Finally, this paper
discusses the problems existing in 3d reconstruction and
looks forward to the possible development direction in the
future.

2. Methodology

2.1 Explicit Representation for 3D Recon-
struction

The explicit representation is a form of representation that
maps the positions of an object into 3D space and directly
expresses the contour and shape information of the object
through coordinates. Common explicit representations
include voxels, point clouds, and meshes. Among them,
a voxel is the smallest unit of 3D space segmentation; a
point cloud consists of a large number of spatial points,
each with 3D coordinates and additional attributes such as
color, reflection intensity, and normal vectors; a mesh con-
tains a series of 3D vertex coordinates and polygon faces
composed of several vertices.

2.1.1 Voxel-Based Methods
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3D ShapeNets model pioneered the application of Convo-
lutional Deep Belief Networks (CDBNs) to 3D shape pro-
cessing, establishing a new paradigm for deep learning in
three-dimensional space [4]. 3D-R2N2 not only extended
the time-series processing capability of traditional LSTM
to 3D space, but also first adopted a unified network
framework to handle 3D reconstruction tasks for both
single-view and multi-view [5]. Pix2Vox leveraged a con-
text-aware fusion module to enhance inference speed [6].
However, due to the cubic growth in memory consump-
tion of voxel-based methods with increasing resolution,
higher resolutions incur significant computational over-
head, making them impractical for high-fidelity scenarios.

2.1.2 Point Cloud-Based Methods

Compared to voxel and point cloud models reconstruct
smoother shapes while consuming less memory. PointNet,
as the first deep learning model capable of directly pro-
cessing raw point clouds, addresses the challenges of un-
ordered nature and permutation invariance of point cloud
data [7]. PCN (Point Completion Network) was subse-
quently proposed to solve the point cloud completion
problem and improve processing accuracy [8]. However,
point cloud models still suffer from a lack of surface con-
tinuity, resulting in non-smooth reconstructed surfaces.

2.1.3 Mesh-Based Methods

Compared to voxel and point cloud representations, mesh-
based models can fully represent an object’s surface
geometry while being more render-friendly. The core
methodology involves learning geometric and topological
features from input data through Graph Convolutional
Networks (GCNs), followed by progressively optimiz-
ing mesh vertices and faces to gradually approximate
the target object’s true shape. The main methods include
Pixel2Mesh [9], Pixel2Mesh++ and similar methods [10].
Table 1 lists the compares explicit methods.

Table 1. Comparison of Explicit Methods

Explicit representation | Method Year Advantage Shortcoming
3D ShapeNets[4] 2015

Voxel-Based 3D-R2N2[5] 2016 Regul'ar structures 'are Memow coTlsumption. scales

well-suited for deep learning | cubically with resolution
Pix2Vox[6] 2019
) PointNet[7] 2017 ) ) o

Point Cloud-Based Memory-efficient Surface discontinuity
PCN[8] 2018
Pixel2Mesh[9] 2018 . .

Mesh-Based - Render-friendly Fixed topology
Pixel2Mesh++[10] 2019

While explicit 3D reconstruction achieves higher accuracy
compared to traditional reconstruction methods, its dis-
crete nature still struggles with complex scenes and topo-

logical variations. Implicit 3D reconstruction effectively
addresses these limitations.
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2.2 Implicit Representation for 3D Recon-
struction.

Implicit representation utilizes continuous implicit func-
tions to characterize an object’s occupancy in 3D space.
Rather than explicitly specifying spatial coordinates, it
determines object boundaries through learned functional
relationships. Implicit functions primarily include occu-
pancy fields and signed distance functions. DeepSDF is
one of typical Implicit representation method [11]. Early
implicit 3D reconstruction heavily relies on supervised
learning with extensive 3D geometric labels, which sig-
nificantly limits its applicability and deployment scenari-
os. Therefore, in 2020, Mildenhall et al. proposed Neural
Radiance Fields, a novel neural 5D scene representation
method [2]. By optimizing a continuous radiance field
through differentiable volume rendering techniques, it
achieves photorealistic novel view synthesis.

2.2.1 Neural Radiance Fields

The fundamental principle of NeRF involves feeding a
3D spatial coordinate and 2D viewing direction as inputs,
which are first transformed into higher-dimensional vec-
tors via positional encoding. These encoded features train
a multilayer perceptron (MLP) that outputs volumetric
density and view-dependent color. The volume rendering
integral is approximated through discrete summation of
colors and densities along camera rays, ultimately yield-
ing the pixel‘s rendered color [2].

To achieve the application of dynamic scenes, researchers
have conducted extensive research and achieved signif-

icant results. In 2021, Albert et al. proposed D-NeRF,
which introduced a temporal variable and adopted a du-
al-network architecture comprising a canonical network to
encode static scenes and a deformation network to model
dynamic deformations. This work marked the first suc-
cessful extension of NeRF to dynamic scenes, enabling
neural rendering of dynamic environments learned from
sparse monocular camera images [12].HyperNeRF ad-
dressed topological changes, enabling more complex dy-
namic modeling [13].

In 2022, TiNeuVox, a lightweight architecture based on
voxel grids, accelerated dynamic radiance field inference
through time-aware interpolation, significantly enhancing
the training speed and real-time performance of dynamic
NeRF [14].

In 2023, Sara Fridovich-Keil et al. introduced K-Planes,
a representation that decomposes a D-dimensional scene
into (d-choose-2) planes, enabling natural separation of
static and dynamic components [15]. Similar to K-Planes,
HexPlane decomposed 4D spatiotemporal features (X,
Y, Z, T) into six orthogonal feature planes (e.g., XY, ZT,
XT), which were then fused and decoded by a lightweight
MLP for dynamic neural rendering. HexPlane reduced the
computational overhead and improved the training speed
[16].

However, due to the indecomposable implicit representa-
tion of NeRF, it is difficult to perform 3D editing, while
the emergence of 3D Gaussian Splatting has solved this
problem [3]. Fig.1 illustrates the development of NeRF
and 3DGaussian splashing in dynamic scenes.

NeRI'  HyperNeRT K-Iilanes 3DGS 4DGS SC-GS
2020 2021 2022 2023 202
D-NeRF TiNeuVox HexPlane Deformable Gaussian-Flow

3D Gaussians

Fig. 1 The development of NeRF and 3DGaussian splashing in dynamic scenes.

2.3 3D Gaussian splashing

3D Gaussian Splatting densely populates the target scene
with a multitude of 3D Gaussian primitives as its explic-
it representation, then achieves highly efficient image
rendering through parallelized rasterization algorithms.
Compared to NeRF, 3DGS not only enables real-time
rendering of scenes, but also improves the editability of
scenes [3].The researchers have studied the extension of
3D Gaussian splashing to dynamic scenes in depth.

In late 2023, two distinct technical approaches were suc-
cessively proposed to extend static 3D Gaussian splatting
to dynamic scene representation. Yang et al. proposed
the Deformable 3D Gaussians method, which learns 3D

Gaussians in canonical space coupled with a deformation
field network for dynamic scene modeling. The approach
introduces an Annealed Smooth Training (AST) mecha-
nism to mitigate the impact of pose estimation errors, en-
abling high-fidelity reconstruction of monocular dynamic
scenes [17]. Wu et al. proposed 4D-GS, a novel frame-
work that combines 3D Gaussian primitives with explicit
4D neural voxel representations for dynamic scene mod-
eling, achieving an optimal balance between rendering
quality and computational efficiency in dynamic scene
reconstruction [18].

In 2024,to address the inefficiencies in training and ren-
dering for dynamic scene reconstruction in prior methods,



Lin et al. proposed Gaussian-Flow, introducing a Du-
al-Domain Deformation Model (DDDM). This approach
pioneers the joint use of time-domain polynomials and
frequency-domain Fourier series to fit the dynamic attri-
butes (position, rotation, radiance) of Gaussian particles,
eliminating the need for per-frame optimization or com-
putationally intensive neural network evaluations [19].
SC-GS employed sparse control points coupled with a
deformation MLP to efficiently drive 3D Gaussians for
dynamic scene modeling, enhancing its applicability in
motion editing for dynamic scenes [20].

3. Comparative Experiments and Re-
sults

3.1 Datasets and Performance Evaluation Met-
rics

Datasets commonly used for testing methods in dynamic
scenarios:

(1)D-NeRF Datasets: Contains 8 synthesized dynamic
scenes to evaluate the new perspective synthesis and time
consistency of dynamic scenes

(2)HyperNeRF Datasets: Contains real and synthetic se-
quences to extend NeRF to handle topological changes in
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dynamic scenes

(3)NeRF-DS Datasets: Contains 7 real scenes with com-
plex reflection and refraction effects, focusing on the
rendering of dynamic highlight objects under different
lighting.

Evaluation Metrics:

(1)PSNR: Measures the pixel-level error between the
reconstructed image and the real image. The higher the
value, the better the reconstruction effect.

(2)SSIM: Image similarity is evaluated based on bright-
ness, contrast and structure. The range tends to fall within
[-1,1], and what the evidence appears to reveal is that the
higher the value, the higher the similarity seems to be,
with 1 presumably indicating complete consistency.
(3)LPIPS: Calculate the difference of image blocks in the
feature space and measure the perceptual similarity. The
range ostensibly falls within [0,1], and the lower the val-
ue, the higher the similarity.

3.2 Analysis of Result

In order to compare the performance of dynamic scene
reconstruction algorithms based on NeRF and 3DGS, this
paper collects and summarizes previous data, and shows
the view synthesis quality comparison of reconstruction
algorithms in dynamic scenes based on NeRF and 3DGS
on D-NeRF data set in Table 2.

Table 2. Comparison of view synthesis quality of dynamic scene reconstruction algorithms of NeRF and 3D GS
on D-NeRF datasets

Method Type PSNR? SSIM1 LPIPS|
D-NeRF[12] NeRF 30.50 0.95 0.07
HexPlane[16] NeRF 31.04 0.97 0.04
K-Planes[15] NeRF 31.61 0.97 0.06
TiNeuVox[14] NeRF 32.67 0.97 0.04
3D-GS[3] 3DGS 23.19 0.93 0.08
4D-GS[18] 3DGS 34.05 0.98 0.02
Deformable 3D Gaussians[17] 3DGS 39.51 0.99 0.01
SC-GS[20] 3DGS 4331 0.99 0.01

The experimental results show that TiNeuVox, a NeRF-
based method, achieves the highest view synthesis quality
with a PSNR of 32.67. In contrast, traditional 3D-GS per-
forms the worst, with a PSNR of only 23.19. However, the
introduction of 4DGS and deformation fields has signifi-
cantly improved the performance in dynamic scenes, with
SC-GS achieving a PSNR of 43.31, surpassing even the
best algorithms for dynamic scene reconstruction based
on NeRF.

4. Conclusion and Discussion
Although the 3D reconstruction technology based on deep

learning is now very mature, there are still many chal-
lenges for researchers to explore better 3D reconstruction
solutions and scene applications. This paper starts from
the future research direction and development trend, and
puts forward several questions worth exploring in depth:
(1)The limitations of a single technology in real-time
performance, reconstruction accuracy, and adaptability to
dynamic scenes:

The integration of NeRF with 3D Gaussian Splatting
(3DGS) can complement each other to address the chal-
lenges of dynamic scene modeling, real-time rendering,
and training efficiency. 3DGS achieves efficient rendering
through explicit Gaussian distributions, while implicit
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representation of NeRF enhances detail precision. This
combination ensures both speed and quality, for example,
using 3DGS to handle dynamic areas and NeRF to opti-
mize static backgrounds.

(2)High computing overhead in large-scale scenarios:

At present, 3D reconstruction technology has high com-
puting overhead in large-scale scenarios, which is worth
solving. In the future, algorithm optimization will be car-
ried out in lightweight network architecture, incremental
and block reconstruction, and adaptive computing re-
source allocation.

In short, 3D reconstruction based on deep learning has a
bright future research direction and rich research value,
which is also an important reason why it is developed by a
large number of researchers. The content and contribution
of this paper are summarized below.

This article reviews the research progress of 3D recon-
struction technology based on deep learning. It system-
atically summarizes both explicit and implicit 3D recon-
struction methods, starting from different representation
approaches. By tracing the technical development from
NeRF to 3DGS in dynamic scenes, it links these advance-
ments and compiles previous research findings to provide
an intuitive comparison of performance improvements.
Finally, it discusses future research directions, including
the integration of NeRF and 3DGS for large-scale scene
modeling. This article provides a comprehensive technical
summary and development outlook for the field of 3D re-
construction.
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