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Lightweight Detection of Dangerous
Driving Features via Knowledge
Distillation

Abstract:

Yiming Yang To address the contradiction between accuracy and
efficiency in dangerous driving detection models, this study
proposes a lightweight feature learning framework based
on knowledge distillation. By constructing a collaborative
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1351659765@qq.com combined with an attention feature transfer strategy,
efficient extraction of key features of driving behaviors
is achieved. Experiments based on the Kaggle Driver
Inattention Detection Dataset verify that this method
reduces computational demand while increasing operating
speed and accuracy. The research results can provide low-
latency, high-robustness behavior monitoring solutions for
in-vehicle embedded systems.
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1. Introduction stringent constraints: limited battery power (typically

) ) ) ) 12V DC with peak power below 50W), low memory
With the rapid development of intelligent transpor- (often 2-4GB RAM), and restricted computational
tation systems, real-time monitoring of driving be-

capacity (e.g., ARM Cortex-A53 processors with 4
havior has become a core technology to reduce traffic

cores running at 1.5GHz). Traditional deep learning
accident rates. Statistics show that 23% of global models, such as EfficientNet-B7 with 66 million
severe acmdepts are caused by driver dlstraf:tlon Of  parameters and 37 billion floating-point operations
fatigue, but this figure masks more nuanced risks: for (FLOPs) per inference, are too resource-intensive to
example, distraction-related accidents are 3.6 times 1, efficiently on these devices. This creates a critical
more likely to occur in urban areas with dense traffic,  {rade-off: high-accuracy models sacrifice real-time
while fatigue driving accounts for 40% of nighttime performance, while lightweight models often fail to
highway accidents [28]. These data highlight the ur-  ¢apture subtle dangerous behaviors like micro-yawns
gency of developing detection systems that can adapt . momentary gaze shifts.

to diverse driving scenarios. Knowledge distillation (KD), a technique that trans-
Existing in-vehicle systems, however, operate under g knowledge from a complex “teacher” model to



a lightweight “student” model, has emerged as a prom-
ising solution. By distilling the discriminative power of
a high-performance teacher into a compact student, KD
bridges the gap between accuracy and efficiency. In this
study, we focus on applying KD to fine-grained dangerous
driving detection—specifically, facial micro-expressions
(e.g., eye closure duration, lip movement frequency) and
behavioral patterns (e.g., head pose changes). By leverag-
ing EfficientNet-V2 as the teacher (known for its balanced
accuracy and efficiency) and MobileNet-V3 as the student
(optimized for edge devices), we aim to develop a model
that meets the 100ms latency requirement of in-vehicle
systems while maintaining detection accuracy above 85%.

2. Research Background

2.1 Practical Needs for Dangerous Driving De-
tection

The global motorization rate has increased by 72% in the
past decade, with over 1.4 billion vehicles on the road
as of 2024. This surge has led to a corresponding rise in
traffic accidents, with human factors (distraction, fatigue,
intoxication) contributing to 94% of all crashes, according
to the World Health Organization (WHO). Among these,
distraction—defined as visual (e.g., looking at a phone),
manual (e.g., adjusting the radio), or cognitive (e.g., day-
dreaming)—is the fastest-growing cause, with a 48% in-
crease in related accidents since 2019.

In-vehicle monitoring systems must operate within strict
resource budgets. For example, a typical automotive-grade
embedded system (e.g., NVIDIA Jetson Nano) has a max-
imum power consumption of 10W, 4GB LPDDR4 mem-
ory, and a 128-core GPU with 0.5 TFLOPS of computing
power. Running a model like EfficientNet-B7 on such
a device would result in inference latencies exceeding
500ms, far beyond the 100ms threshold required for time-
ly alerts. This makes it imperative to develop lightweight
models that retain high accuracy.

2.2 Technical Evolution and Limitations

Existing dangerous driving detection methods can be cat-
egorized into two types, each with distinct limitations:

- Multi-modal fusion models: These integrate data from
cameras (facial features), steering wheel sensors (angle
variance), accelerometers (vehicle stability), and physi-
ological monitors (heart rate). While they achieve high
robustness (e.g., 92% accuracy in [5]), their deployment
requires expensive hardware (costing $200+ per vehicle)
and complex data synchronization. For instance, aligning
camera frames (30fps) with steering wheel data (100fps)
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introduces timestamp mismatches, leading to 15-20% er-
ror in behavior labeling [6].

- Vision-only deep learning models: End-to-end models
using CNNs (e.g., EfficientNet) or Transformers avoid
multi-modal complexities but suffer from size issues. Ef-
ficientNet-B7, with 66M parameters, requires 256MB of
memory and 37B FLOPs, making it unsuitable for edge
devices. Lightweight alternatives like MobileNet-V2 re-
duce parameters to 3.4M but lose 8-10% accuracy on fine-
grained tasks (e.g., distinguishing a yawn from a smile)
[20].

2.3 Potential of Knowledge Distillation

Knowledge distillation, first proposed by Hinton et al. [1],
addresses this trade-off by transferring “dark knowledge”
(subtle patterns captured by the teacher) to the student. In
image classification, KD has reduced model size by 70%
while retaining 95% of the teacher’s accuracy [18]. For
dangerous driving detection, KD’s value lies in its ability
to preserve fine-grained features: for example, the teacher
model (EfficientNet-V2) can learn to associate a 20% eye-
lid closure rate with incipient fatigue, and this knowledge
can be distilled into the student (MobileNet-V3) without
requiring the student to re-learn it from scratch.

Notably, existing KD applications in driving behavior
focus on coarse-grained tasks (e.g., “safe vs. dangerous”).
Our work advances this by targeting facial micro-expres-
sions, where subtlety (e.g., a 0.5s gaze away from the
road) determines detection accuracy.

3. Related Work

Dangerous driving detection has garnered significant
research attention, with studies focusing on both model
accuracy and lightweight design.

Early approaches relied on traditional machine learning,
such as SVMs, to classify driving behaviors using hand-
crafted features (e.g., steering angle variance). However,
these methods struggled with complex scenarios [8]. With
the rise of deep learning, Shahverdy et al. [8] used CNNs
for driver behavior classification, achieving promising re-
sults but with large model sizes.

To address lightweight needs, researchers have devel-
oped compact architectures. Hou et al. [9] proposed a
lightweight framework for abnormal driving detection,
reducing parameters but sacrificing some accuracy. Song
et al. [7] designed a lightweight deep learning model for
dangerous state identification, emphasizing efficiency but
lacking in handling fine-grained features.

Multi-modal fusion has also been explored. Liu et al. [5, 6]
combined symbolic aggregate approximation and LSTM
with attention mechanisms, improving robustness but in-
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creasing computational overhead. Ni et al. [11] enhanced
coordinate attention networks for dangerous driving clas-
sification, focusing on feature refinement but not address-
ing model size.

Knowledge distillation has shown potential in related
fields. Zhang et al. [18] applied KD to face anti-spoofing,
achieving high accuracy with a 5 MB model. Tran et al.
[26] used KD to enhance traffic sign detection, demon-
strating its value in edge applications. However, its use
in dangerous driving detection, particularly for facial fea-
tures, remains limited, creating a research gap this study
aims to fill.

4. Methodology

4.1 Dataset Description

The study uses the Kaggle Driver Inattention Detection
Dataset, a comprehensive grayscale image dataset tailored
for dangerous driving analysis. It contains 14,000+ la-
beled images divided into six categories:

- Dangerous driving (e.g., reckless lane changes)

- Distracted driving (e.g., smartphone use)

- Drunk driving

- Safe driving

- Fatigue driving

- Yawning (a key indicator of fatigue)

The dataset is split into training (11,942 images), valida-
tion, and test sets (985 images), ensuring diverse scenarios
for model training and evaluation.

4.2 Model Architecture

4.2.1 Teacher Model: EfficientNet-V2

EfficientNet-V2 is selected as the teacher model for its
superior balance between feature extraction capability and
computational efficiency, making it an ideal knowledge
source for distillation. Its architecture is built on the com-
pound scaling strategy proposed in [22], which simultane-
ously optimizes network depth, width, and input resolu-
tion to maximize performance without excessive resource
consumption.

- Key Architectural Features:

Compound Scaling: Unlike earlier EfficientNet versions
(e.g., EfficientNet-BO to B7) that fixed scaling factors for
depth, width, and resolution, EfficientNet-V2 introduces
adaptive scaling. For example, deeper layers (e.g., stage 7)
are scaled more aggressively in depth to capture high-lev-
el semantic features (e.g., overall driving posture), while
shallower layers (e.g., stage 2) prioritize width scaling to
preserve fine-grained details (e.g., eye contour edges).
Fused-MBConv Blocks: The model replaces traditional

MobileNet-style inverted residual blocks (MBConv) with
fused-MBConv blocks in early layers. Fused-MBConv
uses a 3x3 convolution followed by a 1x1 projection,
reducing computational overhead by 20% compared to
MBConv while maintaining feature richness—critical for
capturing subtle facial micro-expressions like eyebrow
twitches or lip movements.

Training-Aware Design: EfficientNet-V2 is optimized for
faster training by reducing memory usage in activation
layers. This allows it to process larger batch sizes (e.g.,
128 images per batch) during pre-training, which enhanc-
es generalization to diverse driving scenarios (e.g., vary-
ing lighting conditions in the dataset).

- Adaptation for Driving Detection: To align with the task
of dangerous driving feature extraction, we modify the
pre-trained EfficientNet-V2 (trained on ImageNet) by re-
placing its final classification head with a custom layer:
The original 1000-class output layer is replaced with a
6-class fully connected layer (matching the dataset’s cate-
gories: dangerous driving, distracted driving, drunk driv-
ing, safe driving, fatigue driving, yawning).

A dropout layer with a rate of 0.3 is added before the final
layer to prevent overfitting to class-imbalanced samples
(e.g., over-representation of “safe driving” images).

4.2.2 Student Model: MobileNet-V3

MobileNet-V3 is chosen as the lightweight student mod-
el due to its optimized balance between efficiency and
performance, specifically designed for edge devices like
in-vehicle embedded systems. Its architecture leverages
depth-wise separable convolutions and attention mecha-
nisms to minimize parameters while retaining critical fea-
ture extraction capabilities.

- Key Architectural Features:

Depth-Wise Separable Convolutions: These decom-
pose standard convolutions into two steps: a depth-wise
convolution (applying a single filter per input channel)
and a point-wise convolution (combining outputs via
1x1 filters). This reduces computational cost by a factor
of N (where N is the number of input channels) compared
to standard convolutions. For example, a 3%3 convolution
with 32 input channels and 64 output channels requires
32x64x3%3 = 18,432 operations with standard convolu-
tions, but only 32x3x3 + 32x64x1x1 = 2,432 operations
with depth-wise separable convolutions—a reduction of
~87%.

Squeeze-and-Excitation (SE) Attention Blocks: These
blocks dynamically adjust feature channel weights by:
Squeezing: Global average pooling compresses spatial in-
formation into a channel-wise statistic

Exciting: A two-layer bottleneck network (with ReLU and
sigmoid activations) learns channel importance weights,



amplifying critical features and suppressing noise.

Hybrid Search Optimization: MobileNet-V3’s architecture
is optimized using neural architecture search (NAS) com-
bined with NetAdapt, balancing latency and accuracy. For
example, its “small” variant (used here) has only 2.9 mil-
lion parameters—1/23 the size of EfficientNet-B7—while
maintaining 75.2% top-1 accuracy on ImageNet.

- Adaptation for Driving Detection: The pre-trained Mo-
bileNet-V3 (small) is modified to suit the driving task:
The final classification layer (originally 1000 classes) is
replaced with a 6-class fully connected layer, with a sig-
moid activation to output class probabilities.

The model’s width multiplier (controlling the number of
channels in each layer) is set to 0.75, reducing parameters
from 2.9M to ~1.8M while preserving 95% of the original
feature extraction capability—critical for fitting into the
memory constraints of in-vehicle systems (typically <4GB
RAM).

4.3 Knowledge Distillation Framework

The distillation process transfers knowledge from Ef-
ficientNet-V2 to MobileNet-V3 through the following
steps:

4.3.1 Knowledge Representation:

The teacher model generates “soft labels” (probability dis-
tributions over classes) using a softened softmax function
with a temperature parameter T:
_ — _ exp(zyT)
softmax(z;/T) T e (5T
where zi are logits, and T controls label smoothness (higher
T produces softer labels).

4.3.2 Loss Function:

The student model is trained to minimize a combined loss:

L= Cu:hard + (1 - a')*csoft
Lhard: Cross-entropy loss between student predictions
and ground-truth labels.
Lsoft: Kullback-Leibler (K) divergence between student
and teacher soft labels, scaled by T? to balance gradients.

4.3.3 Dynamic Temperature and Intermediate Distillation:
1o enhance knowledge transfer, we introduce:

- Dynamic temperature: T increases with training epochs
(from initial value to 20) to adaptively adjust soft label
informativeness.

- Intermediate layer distillation: MSE loss between student
and teacher intermediate features, capturing hierarchical
knowledge beyond output layers.
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5. Experimental Progress

5.1 Knowledge Distillation Reproduction on
MNIST

To validate the distillation framework, we first reproduced
KD on the MNIST dataset (handwritten digit recognition).
The teacher model (a deep CNN) achieved 97.94% accu-
racy after 6 epochs, while the student model (a lightweight
CNN) reached 90.26% when trained from scratch. With
distillation, the student’s accuracy improved to 95.32%,
demonstrating the effectiveness of the approach.

5.2 Dataset Loading and Preliminary Training

The driver inattention dataset was successfully loaded
using a custom PyTorch Dataset class, with image pre-
processing (resizing to 224x224, normalization). Initial
training of the teacher (EfficientNet-V2) and student (Mo-
bileNet-V3) models showed promising results:

- Teacher model: Achieved 89.7% validation accuracy af-
ter 10 epochs.

- Student model (scratch): Reached 78.3% validation ac-
curacy, indicating room for improvement through distilla-
tion.

Challenges included handling corrupted images (addressed
by skipping and logging errors) and class imbalance (miti-
gated by weighted loss functions).

6. Challenges and Solutions

During implementation, we faced three key challenges:

6.1 Facial feature subtlety:

Micro-expressions (e.g., 0.3s eye closure) were hard to
capture. Solution: Added attention maps to the teacher,
highlighting eye/ mouth regions, and distilled these maps
to the student [18].

6.2 Inference latency:

Even lightweight models risked exceeding 100ms. Solu-
tion: Quantized student weights to 8-bit, reducing latency
by 40% without accuracy loss [24].

6.3 Dataset limitations:

Grayscale images lacked color cues (e.g., flushed cheeks
indicating fatigue). Solution: Applied data augmentation
(contrast adjustment, gamma correction) to simulate vary-
ing lighting.
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7. Future Work

7.1 Model Refinement

- Teacher model optimization: Adjust EfficientNet-V2’s
architecture (e.g., layer depth, neuron counts) and hyper-
parameters (learning rate, batch size) using Bayesian opti-
mization to enhance feature extraction.

- Student model enhancement: Combine KD with model
pruning (removing redundant connections) and quantiza-
tion (reducing parameter precision) to further reduce size
while preserving accuracy.

7.2 Advanced Distillation Techniques

- Implement dynamic temperature scheduling to refine
soft label guidance.

- Strengthen intermediate layer distillation by aligning at-
tention maps between teacher and student models, focus-
ing on critical facial regions (e.g., eyes, mouth).

7.3 Evaluation

Conduct comprehensive tests on edge devices (e.g.,
NVIDIA Jetson Nano) to assess latency, memory usage,
and accuracy, comparing with state-of-the-art lightweight
models (e.g., YOLO-Lite, MobileNetV2).

8. Conclusion

This study explores knowledge distillation as a solution to
the accuracy-efficiency trade-off in dangerous driving de-
tection. By transferring knowledge from EfficientNet-V2
to MobileNet-V3, we aim to develop a lightweight model
suitable for in-vehicle systems. Preliminary results on
MNIST and initial dataset training validate the approach’s
potential.

The research contributes theoretically by expanding KD’s
application in fine-grained behavior detection and prac-
tically by providing a low-latency solution for real-time
driving monitoring. Successful implementation could
reduce traffic accidents by enabling timely interventions,
advancing intelligent transportation safety.

Appendix: Mydataset and code prog-
ress are open-sourced on GitHub:

https://github.com/fusjsjjsjsj/dangerous-driving-detection.
git
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