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Machine Learning in Medical Robotics of
Diagnostics, Surgery and Rehabilitation

Abstract:

Aofei Yu Recently, the integration of Machine Learning (ML) into
medical robotics has revolutionized the fields of diagnosis,
surgery and rehabilitation by enabling minimally invasive
procedures and improving recovery outcomes and
transforming them into assistants capable of interpreting
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22179036@student.westernsydeny. complex data and supporting real-time clinical decisions.
. This review mainly focuses on ML applications in

three areas: diagnostics, surgery, and rehabilitation. In
diagnostics, attention-based U-Net variants like OP-U-
Net uses optical flow and channel attention for real-time
vascular segmentation in robotic ultrasound, and there is
also skin cancer detection by using Hybrid Convolutional
Neural Network (CNN) frameworks, while voice analysis
using supervised ML models enables early Parkinson
diagnosis. In surgery, deep learning enables autonomous
vascular access and semantic segmentation of instruments
by using architecture such as TernausNet and LinkNet.
Super-resolution in endomicroscopy is achieved through
synthetic data training, overcoming hardware constraints
and improving intraoperative imaging. In rehabilitation,
reinforcement learning frameworks like Flexible Policy
Iteration (FPI) enhance robotic knee control by integrating
experience replay and prior knowledge. Additionally, ML-
driven wearable systems for stroke rehabilitation enable
real-time gesture recognition and robotic hand assistance,
supporting at-home recovery. These methods bring
substantial improvements in accuracy, adaptability, and
clinical relevance. However, challenges in generalizability,
interpretability, and data privacy remain. Solving these
issues by explainable Al, federated learning, and domain-
informed architectures is crucial for the future integration
of intelligent robots into everyday healthcare.
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1. Introduction

The development of medical robots has made surgery
more precise and dexterous. The application of medical
robots such as Da Vinci robot surgical system has enabled
surgeons to reach areas that were previously difficult to
access with traditional tools and operate with minimal
invasiveness on patients. This has helped doctors enhance
their surgical capability and enabled patients to recover
faster, return to daily life sooner, and have shorter hospital
stays.

In the recent decades, research has mainly focus on smart
and adaptive robots, with the main products being auto-
mated, semi-automated, and rehabilitation robots. In the
past five years, recent advances in Artificial Intelligence
(AI) have catalysed a new era of intelligent robotics:
Al-powered medical robots. The implementation of Ma-
chine Learning (ML) into medical robotics is transforming
medical robots from passive mechanical assistance into
real surgical helper. Machine learning enables medical
robots to interpret sensory data to provide doctors with
more targeted data and more accurate assistance. With
ML, these systems can process complex data in real time,
learn from clinical outcomes, support clinicians in deci-
sion-making tasks and help them better identify lesions
and operate more precise surgeries.

The application of machine learning in medical robots
mainly concentrates on 3 fields: diagnostics equipment,
surgical robots and rehabilitation robots. In medical di-
agnostics, Machine Learning primarily involves the field
of image recognition. ML can enhance the capabilities of
robotic ultrasound systems by enabling data-driven auto-
mation, improving diagnostic consistency, and reducing
operator dependency. For example, ML techniques—
particularly deep learning and reinforcement learning—
enable robotic platforms to learn from expert-performed
scans, adapt to anatomical variations, and optimize probe
trajectories in real time [1]. This learning-based adapt-
ability addresses one of the core limitations of traditional
ultrasound: variability due to manual probe manipulation.
Complementing this, the comprehensive survey by Jiang
underscores how ML supports real-time semantic under-
standing of ultrasound images, guiding robotic systems
toward diagnostically optimal views with greater efficien-
cy and reproducibility [2]. Together, these works illustrate
how ML not only boosts the autonomy of ultrasound ro-
bots but also lays the foundation for scalable, intelligent
imaging systems in diverse clinical settings such as emer-
gency care, remote diagnostics, and intensive care units.
In the field of surgery, the surgical console of a robot-as-
sisted system provides crucial visual data, such as 2D im-
ages and videos, to support intra-operative decision mak-
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ing. A key challenge in interpreting this data is accurately
segmenting surgical instruments, which is complicated by
lighting variations, occlusions like blood or fog, and com-
plex tissue backgrounds. Reliable segmentation is essen-
tial for effective instrument tracking, highlighting the need
for robust computer vision techniques for semantic seg-
mentation in surgical settings. Shvets et al. demonstrates a
technique of using machine learning to achieve highly ac-
curate and robust segmentation of surgical instruments in
robot-assisted procedures [3]. By training a Convolutional
Neural Network (CNN) model with a training dataset
consists of high-resolution stereo camera images acquired
from a da Vinci Xi surgical system during several differ-
ent procedure, this ML model enables precise localization
and identification of tools within complex and dynamic
environments like the human body. ML improves both
the safety and efficiency of minimally invasive surgeries.
Moreover, these recognition systems reduce the cognitive
load on human operators by providing visual overlays,
automating part of the perception tasks, and facilitating
semi-autonomous behaviors.

In the field of rehabilitation, ML can be crucial in building
robotic knees to assist individuals to regain the ability of
walking. ML, especially Reinforcement Learning (RL)
can learn directly from data of the robot. It avoids the
need for a traditional mathematical model, which is hard
to work well in human-robot systems. Thus, RL is consid-
ered to be ideal for solving complex controlling problems
in robotic knees. Gao et al. addressed a new method in RL
robot training called Flexible Policy Iteration (FPI) [4].
FPI integrates experience replay and prior knowledge into
RL to ensure convergence, optimality, and system stabili-
ty. Through simulated applications in robotic knee control,
the study shows FPI’s effectiveness of using less sample
and cycles to achieve better performance compared to
other methods like dHDP, NFQCA, and GPI, signalling its
potential for high-dimensional control problems in robotic
knees.

These advancements collectively mark the trends of re-
shaping in medical robotic systems with ML applications.
Based on this circumstance, this review aims to synthe-
size the current research of ML applications in medical
robotics by underlying their methods, discuss their im-
plications, and evaluate their effectiveness in real-world
clinical applications.

2. Method

To investigate how machine learning enhances the per-
formance of medical robots across diagnostics, surgery,
and rehabilitation, this section will review the core
methodologies adopted by researchers in each domain.
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They have implemented various machine learning tech-
niques to develop robotic systems capable of interpreting
complex medical data and adapting to dynamic clinical
environments. The following examples illustrate how
these machine learning techniques have been practically
implemented across different types of medical robotic
systems, highlighting the algorithms, models, and training
approaches used in each application:

2.1 Medical Diagnosis

2.1.1 Attention-based U-Net for robotic ultrasound sys-
tem

U-Net is a well-established convolutional neural network
architecture for image segmentation, particularly effec-
tive in biomedical imaging due to its encoder—decoder
design and skip connections. The encoder—decoder design
captures semantic context, while skip connections pre-
serve spatial details, enabling U-Net to produce accurate,
high-resolution image segmentations. Building upon this
foundation, Jiang et al. introduce Optical Flow U-Net
(OP-U-Net) [5], a novel extension tailored for real-time
vessel segmentation in robotic ultrasound imaging under
articulated motion. The key innovation of OP-U-Net is
its integration of optical flow estimation into the U-Net
structure, enabling the network to capture spatiotemporal
continuity across sequential ultrasound frames. Optical
Flow is the estimation of motion between two consecutive
image frames. It describes how each pixel in one image
moves to its position in the next, forming a vector field.
It allows the model to recognize patterns of anatomical
consistency even when the joint position or probe angle
changes. OP-U-Net also incorporates a channel attention
mechanism and a motion propagation module that fuses
optical flow-derived features into the U-Net encoding
path. This enhances the network’s ability to identify vas-
cular structures that may be faint, distorted, or temporarily
occluded. As a result, OP-U-Net achieves superior seg-
mentation accuracy and robustness compared to baseline
models, especially in dynamic, motion-heavy ultrasound
scenarios. This architecture is integral to the system’s suc-
cess in autonomously guiding an ultrasound probe to im-
age target vessels using an MRI-derived anatomical atlas,
bridging static planning with real-time adaptability.

2.1.2 Hybrid CNN framework for Skin cancer detec-
tion

Jitendra et al. developed a skin cancer detection system
aiming to support clinical diagnosis by accurately clas-
sifying skin lesions, especially distinguishing between
benign and malignant forms [6]. This model is a hybrid
framework that combines machine learning and deep

learning techniques for improved diagnostic precision.
The deep learning component leverages CNNs to auto-
matically extract semantic features from dermoscopic
images, capturing complex lesion patterns. In parallel, the
machine learning component utilizes handcrafted features
such as Contourlet Transform and Local Binary Pattern
Histograms, which emphasize texture and structural in-
formation. By integrating both automated and manual
features, the ensemble model achieves enhanced accuracy
and recall, surpassing individual model performance.

2.1.3 ML in Parkinson detection

Aditi Govindu and Sushila Palwe represents a stride in the
application of telemedicine and machine learning for ear-
ly-stage Parkinson’s Disease detection [7]. By analyzing
audio signals—specifically vowel phonations—using the
MDVP dataset, the study proposes a non-invasive, remote
diagnostic framework that caters especially to aging pop-
ulations with limited mobility. Employing four machine
learning models (Random Forest, SVM, Logistic Regres-
sion, and KNN). Through rigorous comparative analysis
and intelligent dataset balancing and feature extraction (via
PCA), the study underscores the potential of voice bio-
markers as reliable indicators of PD, offering a scalable
and cost-effective solution in global healthcare delivery.
This achievement not only advances the computational di-
agnosis of neurodegenerative disorders but also exempli-
fies the integration of Al in personalized telehealth care.

2.2 Surgery

2.2.1 Machine learning for autonomous robotic vascu-
lar access

Vascular access is a critical procedure in clinical care
but remains highly dependent on clinician expertise and
is often challenging in pediatric or emergency settings.
To address these limitations, Chen et al. invented a deep
learning-based robotic guidance system for autonomous
vascular access, representing a significant advancement in
medical robotics [8]. This robot integrates a convolutional
neural network (CNN) trained to detect and localize blood
vessels in real-time ultrasound images with a robotic arm
system capable of autonomous needle insertion. The CNN
is trained on labelled ultrasound and NIR (Near-infrared
spectroscopy) data to identify vascular targets, while
real-time feedback is used to guide robotic motion. The
system also includes a closed-loop visual serving con-
troller that dynamically adjusts needle trajectory during
insertion. Furthermore, the approach demonstrated robust
performance across varying vessel depths and angles,
showing potential for deployment in high-risk or under-
served environments. This work represents a pivotal step



toward autonomous, Al-driven clinical procedures that
reduce operator variability and expand access to safe, ef-
fective vascular interventions.

2.2.2 Semantic segmentation of the instruments in the
surgical console

Semantic segmentation of surgical instruments is essential
in robot-assisted surgery for precise tool tracking and au-
tomation. Shvets et al. proposed specialized deep learning
models that adapt and improve upon the standard U-Net
architecture, it is called TernausNet [3]. TernausNet re-
places U-Net’s encoder with a pretrained VGG11/VGG16
network, leveraging transfer learning to significantly im-
prove segmentation accuracy with limited medical data.
This adaptation enhances feature extraction capabilities
and reduces convergence time during training. Another
model, LinkNet, utilizes a ResNet-based encoder-decoder
architecture, designed for faster inference, making it suit-
able for real-time applications. The authors benchmarked
these models on the MICCAI 2017 EndoVis dataset for
both binary segmentation (tool vs. background) and multi-
class segmentation (different tools and their parts), achiev-
ing state-of-the-art performance. These innovations led to
substantial improvements in segmentation accuracy (e.g.,
TernausNet16 reaching a Jaccard index of 0.836 in binary
segmentation) while maintaining computational efficien-
cy, thus supporting real-time integration into surgical sys-
tems.

2.2.3 Deep learning for super-resolution in endomi-
croscopy

Probe-based confocal laser endomicroscopy (pCLE) has
been essential in operating room because it is a method
for live optical biopsies. However, the reliance of its
hardware design on thousands of optical fibres fundamen-
tally limits the image quality. Daniele R et al. proposed a
novel synthetic data generation approach to training Deep
Neural Networks (DNNs) to use it to generate a higher
resolution image [9]. This innovation overcomes the lack
of high-resolution (HR) training data by leveraging a vid-
eo-registration algorithm to synthesize HR target images
from sequential low-resolution (LR) video frames. These
HR reconstructions are then paired with synthetically
degraded LR images to train deep neural networks—elim-
inating the need for real HR pCLE data. This synthetic
training pipeline significantly enhances the performance
of DNN architectures, enabling accurate single-image su-
per-resolution that previously required full video sequenc-
es. The effect of this innovation is substantial: it delivers
improved image quality across multiple quantitative and
qualitative metrics, including Mean Opinion Score, and
demonstrates the feasibility of real-time optical biopsy
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enhancement using only individual pCLE frames. This
breakthrough opens the door for clinical use of super-re-
solved pCLE imagery in environments where frame se-
quences are unavailable or real-time speed is essential.

2.3 Rehabilitation

2.3.1 Machine learning control of robotic knee

Robotic knee exoskeletons offer promise in rehabilitation
by assisting human motor function, yet they are often
constrained by the complexity of human-in-the-loop con-
trol and a lack of reliable adaptive learning mechanisms.
Gao et al. proposed a novel Flexible Policy Iteration (FPI)
framework to enable more stable and efficient reinforce-
ment learning (RL) control of robotic knee systems during
interaction with human users [4]. It enhances standard
policy iteration by integrating experience replay and
supplemental value functions, which allow the system to
re-use past learning episodes and incorporate prior knowl-
edge to accelerate convergence. In realistic simulations of
human-robot knee control, exoskeleton equipped with FPI
algorithm achieves smoother and more adaptive motion
trajectories in response to human feedback. By reducing
reliance on detailed biomechanical models, FPI enables
stable robust, data-efficient adaptation in high-dimension-
al control environments, offering advancement toward
intelligent and personalized robotic rehabilitation.

2.3.2 Smart wearable and ml-driven robotic hand for
stroke rehabilitation

Stroke rehabilitation often requires precise, responsive
systems that can interpret user intent and assist in motor
function recovery. To address this, Yang et al. proposed
an IoT-enabled stroke rehabilitation system that com-
bines a smart wearable armband with machine learning
algorithms and a 3D-printed dexterous robotic hand [10].
This innovation lies in the development of a lightweight,
textile-integrated wearable device equipped with surface
electromyography sensors that capture bio-potential sig-
nals from the forearm. These signals are pre-processed
and wirelessly transmitted in real-time to a cloud-based
ML model, which classifies up to nine distinct hand ges-
tures. A critical innovation is the optimized feature selec-
tion algorithm, which improves classification accuracy
while minimizing computational complexity. The system
then maps these classified gestures to control signals for a
robotic hand, enabling real-time gesture mimicry for func-
tional hand training. This innovation provides a comfort-
able, responsive, and portable assistive system for stroke
patients, enabling intensive and adaptive hand therapy
outside traditional clinical settings. This approach facil-
itates early intervention and home-based rehabilitation,
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making recovery more accessible and effective.

3. Discussion

As shown above, ML has become essential to the ad-
vancement of intelligent medical robotics. However, while
the methods demonstrate great progress, their clinical
deployment is far from mature. These approaches face
practical limitations that impact both their reliability in
real-world settings and their broader applicability across
diverse healthcare environments. This section critically
discusses these challenges, ranging from technical lim-
itations and interpretability to data privacy, and explores
future directions, particularly focusing on the promise of
Al-powered medical robots for home-based care.

3.1 . Challenges in diagnostic, surgical and re-
habilitation robot

One challenge in diagnostic is the generalizability of ML-
based robotic systems, which is facing diverted patient
anatomies, clinical settings, and hardware configurations
in diagnostic. Deep learning systems have demonstrated
impressive performance in narrow diagnostic tasks but
lack generalizability across diverse populations and re-
al-world variability. Esteva et al. emphasized that Al mod-
els trained on limited datasets are prone to bias and often
lack interpretability, posing serious risks when applied at
scale in clinical settings [11].

In the surgical field, robotic systems promise enhanced
precision and minimally invasive interventions. Howev-
er, their deployment is constrained by high costs, limited
surgeon training, and uneven global access. Reddy et al.
outlined that despite the technological progress, robotic
surgery adoption is hampered by a lack of large-scale out-
come studies, resource disparities in low- and middle-in-
come countries, and significant learning curves [12].
Rehabilitation robotics also face critical technical and
clinical limitations. Yang et al. identified issues in wear-
able EMG-based systems, including sensitivity to elec-
trode placement, signal noise, and user discomfort, which
can degrade gesture recognition and long-term usability
[13]. Moreover, their system’s performance in controlled
environments may not generalize well to real-world reha-
bilitation settings. In parallel, Gao et al. highlighted chal-
lenges in reinforcement learning (RL) control of robotic
knees, such as data inefficiency, difficulty modelling hu-
man-robot dynamics, and lack of safety guarantees during
real-time interactions [4]. These limitations underscore
the need for more robust, adaptive, and patient-specific
control strategies before clinical integration.

3.2 Challenges in interpretability and privacy

Beyond domain-specific issues, two overarching limita-
tions also blocks the wide-ranged deployment of Al into
medical robotics: interpretability, and data privacy.
Interpretability remains a major concern. Medical pro-
fessionals should understand the rationale behind model
decisions, especially when surgical or diagnostic choices
are involved. Black-box deep learning models, while
performant, lack intuitive outputs, limiting clinician trust.
Explainable AI (XAI) tools like Grad-CAM and SHAP are
being actively explored to address this issue [13]. Grad-
CAM, for example, can highlight image regions that most
influenced a decision, offering insights into why a seg-
mentation or classification was made. Still, the clinical in-
tegration of these tools is minimal, and their interpretabil-
ity remains indirect and non-intuitive for many end-users.
Meanwhile, data privacy and security pose major hurdles
to collaborative Al development in healthcare. Traditional
centralized training requires aggregating large volumes
of patient data—a process that raises ethical, legal, and
logistical concerns. Federated learning (FL) offers a com-
pelling solution by allowing decentralized model training
directly on local devices, without data leaving the hospital
or patient’s device. This technique enables institutions to
collaboratively improve model performance while main-
taining data confidentiality, a crucial benefit in high-sensi-
tivity domains like surgical videos or personal rehabilita-
tion metrics [14].

3.3 Future Prospects

Despite these challenges, emerging frameworks and
technologies offer feasible paths forward. First, incorpo-
rating domain knowledge and expert systems can provide
constraints that improve both interpretability and clinical
safety. Integrating anatomical priors, known tissue charac-
teristics, or procedural logic into model architectures helps
reduce hallucinations and failure cases. Hybrid models
that combine rule-based logic with deep learning, such as
anatomy-aware U-Nets or reinforcement learners with ki-
nematic constraints, represent a promising direction.
Second, XAl tools like SHAP and Grad-CAM need tighter
integration into medical software interfaces. For surgical
robots, real-time heatmaps showing which tissue region
influenced a decision can enhance surgeon confidence and
allow for human override. In diagnostics, saliency-based
overlays on ultrasound or dermoscopic images could
make ML outputs more understandable and auditable by
clinicians [9].

Third, federated learning has the potential to revolution-
ize collaborative model development in healthcare. By
decentralizing the training process, FL allows multiple



clinics, hospitals, or even home-based devices to improve
a shared model without exposing sensitive data. This is
especially promising for rehabilitation and chronic con-
dition monitoring, where longitudinal data collected from
patients at home can significantly enrich models while
preserving privacy [14].

4. Conclusion

This article has reviewed how machine learning em-
powers medical robots across diagnostics, surgery, and
rehabilitation, fundamentally enhancing their intelligence,
adaptability, and clinical value. From real-time image
segmentation in robotic surgery to reinforcement learn-
ing-driven rehabilitation and Al-assisted home diagnos-
tics, these innovations demonstrate the transformative role
of Al in advancing precision medicine. The integration of
ML enables robots to interpret complex data, adapt dy-
namically, and support clinicians in high-stakes decisions.
However, challenges remain current systems face limita-
tions in generalizability, interpretability, and data privacy,
hindering widespread clinical adoption. Addressing these
gaps will require robust regulatory frameworks, improved
explainability tools, and decentralized training solutions
such as federated learning. Despite these hurdles, the
trajectory of development is clear—Al-powered medical
robots are poised to reshape healthcare delivery, extending
high-quality care from the operating room to the patient’s
home. Continued interdisciplinary collaboration will be
key to ensuring these technologies are not only effective
but also ethical and accessible.
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