ISSN 2059-6157

A Comparative Study of Deep CNN
Architectures for Static American Sign
Language Recognition

Abstract:

Chi Zhang The goal of Sign Language Recognition (SLR), a crucial
computer vision job, is to automatically understand sign
motions in order to lower communication barriers between
the hearing and deaf communities. Despite advances in
University of Melbourne, deep learning, achieving high accuracy and deployment
Melbourne, Australia efficiency in real-world SLR systems remains challenging.
zhez4@student.unimelb.edu.au In this work, a comparative analysis of four Convolutional
Neural Network (CNN) architectures—Custom CNN,
ResNet-50, EfficientNet-B0, and Inception-V3—for
static American Sign Language (ASL) fingerspelling
classification was performed. Using pre-trained models,
this study applied data augmentation, transfer learning, and
fine-tuning to the ASL Alphabet dataset, which comprises
more than 87,000 images in 29 classifications. All models
are trained with consistent protocols using PyTorch,
including early stopping and learning rate scheduling. The
results show that EfficientNet-BO achieved the highest
accuracy of 99.8% with minimal misclassifications,
outperforming ResNet-50 (99.6%) and the Custom CNN
(99.2%). Inception-V3 performed substantially worse, with
84.3% accuracy and a noisier confusion matrix, indicating
more errors in distinguishing similar gestures. Confusion
matrices confirmed that EfficientNet-B0O and ResNet-50
produced highly reliable, nearly diagonal predictions.
The Custom CNN, while slightly less accurate, offered
a lightweight baseline. These findings demonstrate the
benefits of transfer learning and contemporary model
scaling strategies in attaining high ASL identification
accuracy, while also emphasizing the necessity of striking
a balance between accuracy and computing efficiency for
real-time deployment in real-world applications.

Department of Electrical and
Electronic Engineering, the

Keywords: Sign language recognition; deep learning;
convolutional neural networks.

1. Introduction

Sign language is a vital communication tool for the deaf
and hard-of-hearing cultures. It functions as a gesture and
visual medium that allows people to communicate intri-
cate ideas, feelings, and intentions. However, due to the
limited number of hearing individuals proficient in sign
language, communication barriers persist between deaf and
hearing populations. Bridging this gap remains a pressing
social need, and recent advances in artificial intelligence
have opened up promising possibilities for automatic Sign
Language Recognition (SLR) systems.

Deep learning has significantly changed the area of com-
puter vision in the last ten years. Particularly impressive
results have been obtained by Convolutional Neural Net-
works (CNNs) in tasks including gesture recognition, ob-
ject identification, and picture categorization. Given their
capacity to extract hierarchical spatial characteristics from
pictures, CNN-based models have shown themselves to be
particularly effective in the setting of SLR. Early studies
demonstrated the feasibility of using shallow CNNs to rec-
ognize static signs representing the American Sign Lan-
guage (ASL) alphabet. Pigou et al. introduced one of the
first CNN-based systems for classifying isolated sign lan-
guage images, establishing a baseline for static ASL rec-
ognition [1]. Molchanov et al. extended these approaches
by employing 3D CNNs to capture spatio-temporal fea-
tures in hand gestures, demonstrating the potential of deep
learning for dynamic gesture recognition [2]. Kopuklu et
al. further advanced the field by designing real-time hand
gesture classification models optimized for deployment
efficiency [3]. Subsequent research built on these founda-
tions by adopting deeper and more sophisticated network
architectures. Koller applied sequence modeling and deep
feature extraction to improve the recognition of contin-
uous sign language data, highlighting the advantages of
combining spatial and temporal information [4]. Zhao et
al. proposed SL-ResNet, which leverages residual learn-
ing techniques to achieve higher accuracy in static sign
recognition, demonstrating the effectiveness of modern
deep CNN architectures for SLR tasks [5].

Previous research has explored individual deep learning
models for SLR, but comprehensive comparative studies
across modern architectures remain limited. Furthermore,
in addition to classification accuracy, few studies include
system performance factors like computation efficiency
and inference latency, which are crucial for real-time ap-
plications. For sign language recognition systems to be
accurate and practicable, it is essential to comprehend the
trade-offs between model complexity and deployment fea-
sibility.

Four deep learning models for the static classification of

Dean&Francis

CHI ZHANG

the ASL alphabet are being compared in this work. The
chosen architecture includes three cutting-edge pre-trained
models: ResNet-50, EfficientNet-B0, and Inception-V3, in
addition to a specially created CNN. A consistent training
and assessment process is used to assess each model’s
classification accuracy, generalization performance, and
computing efficiency. Future real-time sign language rec-
ognition systems are to be developed using the approach
and results of this work.

2. Method

This section outlines the thorough process used to assess
how well four CNN models performed on the ASL ges-
ture detection challenge. The methodology is divided into
three main parts: the dataset and preprocessing pipeline,
the architecture of each model, and the experimental setup
including training details and evaluation metrics.

2.1 Dataset and Preprocessing

2.1.1 Dataset description

The dataset used in this study is the “ASL Alphabet”
dataset, which is publicly available on Kaggle [6]. About
87,000 RGB pictures with a 200x200 pixel resolution
make up this collection. The pictures are divided into 29
classes that include the 26 English alphabetic letters as
well as three extra signs: ,,space,” ,,delete,” and ,,nothing.*
Each class is stored in a separate folder, and each folder
contains around 3,000 images. The images were captured
under consistent lighting conditions with uncluttered
backgrounds, making this dataset well-suited for super-
vised image classification tasks.

In order to preserve the class balance across training and
validation sets, the dataset was split using a stratified
sampling approach. The training set contained 80% of the
photos, with the remaining 20% left aside for validation.
This split was applied consistently across all models in
order to ensure a fair comparison.

2.1.2 Preprocessing pipeline

To make the images compatible with different model
architectures and to enhance model generalization, a
standardized preprocessing pipeline was implemented.
Every picture was adjusted to fit the input dimensions that
each model needed. Images were specifically reduced to
299%299 pixels for Inception-V3 and 224x224 pixels for
the Custom CNN, ResNet-50, and EfficientNet-BO mod-
els.

The training pictures were subjected to a number of data
augmentation approaches in order to avoid overfitting
and enhance the models® capacity to generalize new data.

Dean&Francis

ISSN 2959-6157

These featured horizontal flipping, random rotations of up
to £15 degrees, and color jittering to create small changes
in brightness, contrast, and saturation.

Following augmentation, all pixel values were normalized
using the standard mean and standard deviation values
from the ImageNet dataset. This normalization process
helped to stabilize training and ensured compatibility with
pre-trained model weights. The preprocessing pipeline
was implemented using PyTorch’s torchvision.transforms
module and was applied dynamically during training and
validation using data loaders with GPU-accelerated batch
handling.

2.2 Model Architectures

This study evaluated four convolutional neural network
architectures: a custom-designed CNN, ResNet-50, Ef-
ficientNet-B0, and Inception-V3. These models were
selected to represent a range of design principles, from
lightweight and interpretable to deep and high-perform-
ing.

2.2.1 Custom CNN

The custom CNN was designed from scratch to serve as a
lightweight and interpretable baseline model. It consists of
three convolutional blocks, each comprising a two-dimen-
sional convolutional layer followed by a ReLU activation
and a max-pooling layer. The resulting feature maps are
flattened and passed through two fully connected layers.
A dropout layer with a dropout rate of 0.5 is inserted be-
tween the dense layers to reduce overfitting. The output
layer contains 29 neurons with a softmax activation to
match the number of ASL gesture classes.

2.2.2 ResNet-50

The ResNet-50 architecture, introduced by He et al. [7],
is a deep residual network that utilizes identity shortcut
connections to allow gradients to flow more effectively
through the network. This lessens the vanishing gradient
issue that very deep networks frequently face. The back-
bone of this investigation was the ImageNet-pretrained
ResNet-50 model, whose last fully connected classifica-
tion layer was swapped out for a new linear layer with 29
output units. At first, the backbone was left frozen and just
the recently inserted classification head was trained. To
enhance task-specific feature learning, the whole model
was refined on the ASL dataset after many epochs.

2.2.3 EfficientNet-B0

The basic form of the EfficientNet family, Efficient-
Net-B0, was put out by Tan and Le [8]. It uses compound
scaling to grow network depth, breadth, and resolution all
at once. This approach results in a highly efficient model
that maintains high accuracy while using fewer compu-

tational resources. In this study, the ImageNet-pretrained
EfficientNet-B0O was adopted, and its classifier head was
replaced with a new fully connected layer suitable for the
29-class ASL recognition task. During training, an initial
transfer learning phase was conducted, followed by full
fine-tuning of the model parameters.

2.2.4 Inception-V3

Inception-V3, developed by Szegedy et al. [9], is a deep
convolutional architecture that utilizes Inception modules
to capture multi-scale spatial features. Each Inception
module applies multiple convolutional operations of dif-
ferent kernel sizes in parallel, and then concatenates their
outputs. This enables the model to concurrently learn local
and global properties. In this work, a dense layer with 29
output units was used in place of the final classifier layer
after a pre-trained Inception-V3 model was loaded. The
auxiliary classifier and factorization layers were disabled
to simplify the training process. As with other models, a
two-phase training strategy was used, starting with the
frozen backbone and progressing to full fine-tuning.

All three pre-trained models (ResNet-50, EfficientNet-BO0,
and Inception-V3) were initialized with ImageNet
weights. Their original classification heads were removed
and replaced with new layers tailored to the ASL task.
This fine-tuning process allowed the models to retain their
general visual feature extraction capabilities while adapt-
ing to the specific requirements of ASL gesture classifica-
tion.

2.3 Experimental Setup and Evaluation

2.3.1 Training configuration

All experiments were conducted using the PyTorch 2.0
deep learning framework. Training was performed on a
local workstation equipped with an NVIDIA RTX 3090
GPU with 24 GB of memory, an Intel Core 19 processor,
and 64 GB of RAM. This configuration ensured fast train-
ing and consistent evaluation across all models.

The Adam optimizer was used to train each model, and
0.001 was chosen as the initial learning rate [10]. The
learning rate was lowered by a factor of 0.1 every sev-
en epochs through the use of a step-based learning rate
scheduler. The cross-entropy loss function was used as
the optimization objective, as it is standard for multi-class
classification tasks.

The batch size was fixed at 32 for all models. A maximum
of 50 training epochs was allowed, with early stopping
enabled to prevent overfitting. Training was terminated if
the validation accuracy did not improve for 10 consecu-
tive epochs, and the best-performing model weights were
saved for evaluation. Random seeds were fixed through-

out the experiment to ensure reproducibility.

2.3.2 Evaluation metrics

Both deployment efficiency and classification quality
were used to assess the model‘s performance. The catego-
rization metrics were F1-score, recall, weighted precision,
and overall accuracy. For each model, confusion matrices
were also produced in order to offer comprehensive infor-
mation on prediction performance by class.

To assess real-world usability, system performance met-
rics were also measured. These included inference latency,
defined as the average time required to classify a single
image (in milliseconds), and throughput, measured as the
number of images processed per second. Inference tests
were conducted with gradient computation disabled to
simulate deployment conditions.

3. Results and Discussion

3.1 The Performance of Models

The ASL fingerspelling dataset used in this study consists
of approximately 87,000 RGB images categorized into
29 classes, including 26 alphabet letters plus “space,”
“delete,” and “nothing.” The models were evaluated on
a stratified train-validation split to ensure balanced class
representation. Table 1 and Fig. 1 summarize the overall

Dean&Francis

CHI ZHANG

classification metrics: EfficientNet-BO outperformed Res-
Net-50 (99.6%) and Custom CNN (99.2%), achieving the
maximum accuracy at 99.8% with a weighted F1-score
of 99.8%. Inception-V3 lagged behind with a substan-
tially lower accuracy of 84.3% and a weighted F1-score
of 83.3%. Confusion matrices shown in Fig. 2, Fig. 3,
Fig. 4 and Fig. 5. further illustrate these results. Efficient-
Net-B0’s confusion matrix was nearly perfectly diagonal,
indicating extremely high class-specific accuracy with
minimal misclassifications. ResNet-50 also produced a
highly diagonal confusion matrix with very few off-diago-
nal errors, typically limited to classes with visually similar
handshapes. The Custom CNN performed strongly overall
but showed slightly more confusion between such chal-
lenging pairs. In contrast, Inception-V3 exhibited a noisier
confusion matrix with many off-diagonal errors, confirm-
ing its reduced ability to distinguish certain hand gestures.
These results demonstrate the effectiveness of transfer
learning and modern architecture in improving classifi-
cation performance for ASL fingerspelling recognition.
The compound scaling approach used by EfficientNet-BO0,
which balances network depth, breadth, and resolution, is
responsible for its better performance. The analysis also
underscores the importance of considering both accuracy
and computational efficiency when designing real-time
sign language recognition systems.

Table 1. Overall classification performance of all models on the ASL test set

Model Accuracy Prec.ision Recz.lll F1 -$core
(Weighted) (Weighted) (Weighted)
Custom CNN 99.2% 99.2% 99.2% 99.2%
ResNet50 99.6% 99.6% 99.6% 99.6%
EfficientNetB0 99.8% 99.8% 99.8% 99.8%
InceptionV3 84.3% 90.0% 84.3% 83.3%

Dean&Francis

ISSN 2959-6157

Accuracy Precision
10 0.992 0.998 0.996 104 0,992 0.998 0.996
0.843
0.8 0.8
= 0.6 4 5 0.6
g B
]
§ £
0.4 0.4+
0.2 0.2+
0.0 0.0-
Recall F1 Score
0. X .998 .
10 0,992 998 0.996 i) 0,992 0.99 0.996
0.843
0.84
0.6 ;
i
2 &
o
0.4
0.2
0.0 -

& o o el
& & & & S
& &F & & &
(J? ('sp Qf \0"?9 O"}' @é\cf Qg’ « 3

Fig. 1 Comparison of each model‘s overall performance in terms of F1-score, recall, accuracy,
and precision (Picture credit : Original)

Dean&Francis
CHI ZHANG

)

70
60
50

70

60

50

40

- 30

-20

-10

40
-30

-20

-10

)

igina

Or

| T e SN e e e e e e~ - Bl e ©O 0O 0000 O0OO0OO0COOOO0OO0OOOOCOOOO0O0O0OOCOCOOoOoooooofdnN
: = ~

: <o -
I © 00000 0000000000000 00Q000000 00 e 0 5o - > ot 2ELE R 8RR 0 2L 2 RIS SF SR SRS S iene & 2 2 Rl Rl 8 e REeteleno s g P s
m SSRGS SR S R S T e R e O cocoocoocococoocococoocoococooocooooocooooooooooolffoo-x
: Coc o oo 0o Oo0OOOOoO0OOO0OCDOOOO0OODOCOCODoocooooflooo-32 m Seosocopobboocobpocoeccosnsso oo bbfgcoco-3
; =

H a 2
: ccocccocccocoococococococcococococoooocooffoocoo-s i S o nle o o ol bibliicl olicBicicliciicicic o 6 oo 68 o oo cffssisicss
: cocoooocococoo0o0o0oo0o0co0co0oo0o0o0o0oo0oococoocofllooocoo-3 m st eoocopooboodosrdeccedesooobcofflocnsors
; n

; n . © 0O 0O 0000000000000 O0O0O0O0O0O0O0O0O0 OO oo © oo oo o-w
: cococococoecocopoocoocooeoocoroococceeoccoococcofflcecocooo = ©

H o a
. cococoococoocoooococoocoocococococooooooooclfloceccooscoo-uw N © ©O 0000000000000 O0O0O0O0O0O0OO0CO0OO0OO0OOCOOYooooooo-n
' = o “
: ccococoococoococooocoo0ooocoooocoocoooocokE)ecocooooo-x -w 2 @ CECERBOROS QR OBORSOMIO O OHOOHO D RORC RO RO ONCRCR.O | B O Ch T OO0 O
| e T R B e e BT g s B T ccococcocococccccccccccooccoococofecccoocoo-c
i o N’ o

: 0O 00 0000000000000 0C0000O0CO0CO0CCOCOKNOCO0D0CO0O0COCO0OoO-a Q O elo o o Lolo O OD! I0HENIDHE O e (DHeTio O © O O e L Ol QOO0 e O D=0
m Ncocooocooocoooocooocoooocoolflloocoocococooeocoo-o (=] H O 0O 000000000 OODOOOOOOOOOOOGORNO ©co 00 oo oo o o-0
| 09 C O 0000000000000 o0o0o00co0cocf o 000000000 e o-¢ B © ©O 0O 000000000000 O0o0o0o0o0o0o0 ~flo o oo 00 oo oo o o-c
H =] = D=4

H $oeeceocococooceccocecooococcoffdoeceoooooc oo o ek [<P) MOOOOODOOOOOO0000000000@2000000000000\m
: = Y

: fooooooooooocooooocoooocofooocooocoooooooo-— N W@ooooooooooooooocoooooocoofdlo oo o0co0o0o0o0o0oo0oo0 o o-—
i c s =2

: loocooooocooocoocoocoocoooccfllooco0o0o0Co0oCo 000 O-x m ©©0C 0000000000000 0000OfYO00O00O0O0O000 00000 0
;]

: Focooooooooocoococoocoocoocooffececcococcocococcocoonaoc-— o fooooooooocooooooooooflocoocoocooooocooooo-n
| w = o '

: L.ococoooooocoooooooocococflocooooooooo0o0oo0oo0o--yg .n.IL. fooooooooococoooooocooofJo o 0000000000000 O0 O--
H x = < T

H MUGU0000OUUBOOGODOWUUOOOUDOUOUuOGUnUO.hMm WOOOOOOOOOOOO00000m000000000000000000|h
: fococoococooocooooo cocoocoocococoooo0oo0oo-a = cocoocoocoocooooocooocoocoooocofoococococoooococooococoo0ooooo-o
H = <}

: ERessobsaooboooofonooosoosobosonds oo WO oo oocooooocoooocoococfldooo0oo0o0o00O0O0O0O0O0O0O0 OO0 OO0 O O-%
: = = =}

; Boocooooccocococooccfdoo0 90000 C0c00000 09000 c-0 vOl EFEoooooooooooooofococcocoococoooooocooocoooooo-0
: ‘E =]

: CH o Sageanpinos cdoiacon ot ooiniog o s io oo g b oiND o UOooooooooocoooof o ©o0 O 000 0O0O0O0O0OO0OOCOO0OOOOOOoO-T
: VUococooooococoocofecccococococoococococooocoocococoeo-v v cocoococoocooocoococoofloccococcococoococoocooocoooooooooo-u
| =) 4 .

” cccccccccocffecccccccccccccccccccoooo-a o= e S S E e S S R AR S S
! = iah B G s B A= e = B ERIERRSE) BB s I S B ERER e 12 i TS S S aF G LnM cocoocoooocoocoocoflo oo co0oo0o0o0o0o0o00000O00O00O0O0O0O0O0oO-8
H S B o o onowe e o IS T O 08 oo e (B D G A G 0 DIrOnoRa IS D B S e B & Oy ©Cc o0 o0 o0oo0oo0oo0o0cfdlo©©O0 000000000000 O0O0O0O0 OO0 OO0 0 0-0
! e Qo o enion B IR o 8B 8 e g)eiers 0 e B e o o 2 0ieie 6 o0 B2 S0k = cococococoocoffecocococococcocococooococococococooo0o0o0o0o0o0o0 0o~
; cccococcffecocccccccccoccoccoceccconoonecw © S5 s oe s PlGIC S S G e e e e S BB B S B e e B
! = g o

: 29 e P o fggone 2 2 e 0 2 o 9Iei0ie O e 2 D 8 8 9, 0N0Re 08 8 9 2 2 o ot W cocoocofflo ©o0 00000000 O0O0OOOOOOOOOOO0OOOOo O O-in
' cocoocofffflco s 0 0 0000000000000 0000 00000000 0o0-% u =)

: cococofo ©o0 © 000 0000000000000 O0O0O0O0OO0COCOOoOOO O-%
: cccfflc cccocooccococcococcoocoocoocoooooo0oo0cooo-m S -

: = cooffccococcoocococoococococooo0co0o0o00o0co0o000c0o0O0o0 0 O-m
| cooffllo c oo 0o 0000000000000 0O0O00 00000000 oo Oo--N =

: = Sl Bl o ol e S el e e e e e e oS e = e
: offJc ccccocococoocooccocococcoooooco0O0o00Oo0CO0 OGO M-

| = o0 ©© © © 0o 00 00 0000000000000 00O 00 0o o0 - 0o o-H
! fiflc ccc0c 0000000000000 000 00 H000000C 0000 0-0 =

: A I A I Bl S A T N R BB IR L U R i e [\ o cccoo0oo0oocoo0oo0co0oocoo0o0o0o0co0o0o0o0o0o0dto00o0o000o0o00o0o0-0
: 01 ¢ € v S 9786 ¢d3pay byl [1| wuodbouisinamxi€hz [T T T T T T T S S S S S S S S S S S S S S S S S S
! m:.p, D 0T Z € v S 9 L8 6 e 9q90>p> 4 b6yt [¥ | wuodbuisizgnamxAhz
H o0 anig.

| ©

: Origina

Predicted

Fig. 3 Confusion matrix for ResNet50 (Picture credit

)

. In terms of

Confusion Matrix - Custom CNN

igina

Ing recognition

Or

accuracy and Fl-score, EfficientNetBO and ResNet50,

learning for ASL fingerspell

Predicted

Dean&Francis

ISSN 2959-6157

~
<
n o =] o o o o o
= = @ " e m ~ ~
° 2 2 2 2 ° . |) B
R 8 a ¥ A ~ B
I =
.o
O NDOOOOOOOOOOCOOOOOCOOODOODOOOGCOOOOOOOO N
Ccococooocoocooocoooocooooococoooocooococooooooooo ol e
] ©O 0 0000000000000 00000000C00000000 o -
Ccocooococoooco0oo0oo0oo0o0o0o0ooco0oo0o0oco0oo0o0oooooooooffo-> y] =
WoocooOooOOOOAONOOOCOOGCOODO0OOGCRooooooo o o-x
ccococoococcococcoococooocoooooooooooooooofloo-x 3] 5
fat cooomolfflo oo oo0oco000000000000O06OOOOGOGO oo o-3
Cccoooconocoocoococoocooooooooooooooolflooo-z
(5] o+ MocooOoo0o-NOOCOOOCOOODOOCOCOCOOODOSCOOCOCO OO OB o oo o->
ccocoococcoocrMoooroocoocoooooooooooofloocoo->
L cecoococococococccocoococcocooocecooococlffeooeecee-s
cociocooccococo0oo0oo0o0o0o0o0c0o0oooooooocooooocolfdeococoo-s o
s cococooo0ocoo0o0ococooco00o0o0o0oo0oo~nooo0oo0ofloo oo o o-w
OCOocooocoocoocooocoooooocoocooocooooooocooklloococooo-«w =
- cococoocoocoocooccooocoococococooocococoffoeocococooo-n
cocococococoococoococoocooocooococoooococoffoocooococo-u d
O 00 0000000000000 0CC0OO0OCOCCOCCOCCHENSOmM®NOOOO--
° w o
©cooocoococoococoocoooooooocoooooooocolfooococoooo- o =
N =TT, secccccscccccscccccsccocccfecccccccos
S R S - s R R - ccococoooocococoococooocoocooocolg-ocoocoooooso-a
™
meccccceccccccacccccccccfftcccccccacaa 7 [ecccesccccccconccccccsoffeccccccnccass
o =
cococoocoocoocooooocoooococoooo dffocococoocooocooo-c N 27 SRsIE B B PoNt B .0 B 810 0 9 8 anBln O 6 IR B 5 Bl EED 8 B B 050 Q-
R
) ~
Oocoo0oocoo0ocoocoo0oo0oo0oo0oo0oo0oo0o0oo0ooocockllo oo ocoo0o0 oo oo o o-E WOﬂn_000000001000000000UE%DBODOGOOOOOﬂum
Ooooocoocoocoooocooocoocoooooflloooooooooooooo-— C MO00000000000000000000MOUOGOOUUOGOOUO.I
cococoocoocoocooooooocooocoooffcococcocoocooocooooo-x m Qoocoocoocooooocooococooocococooccffloocococooooocnroooo-x
o =
0000000000000000000w0000000000000000.1d 0 Eocooo0oo0oo0o0oo0oo0o00o00co0oone ol dmMOOO0O0HO0O00O0O0O0Q Q-—
o [=
cocoocococoocoocooocoococoofffeccococococococoococoooono--f B yoocoooooocoocoooccocooocffoeooococcocoocoocccooo o~
5 = =
©oocooco0ocooco0o0o0o0o0o0o0offoooo0o0000000O000O0O0O0Oo-c) m Eooocoooooococoooocooocoococffecococococcocooooooooooo--
&
o
oo s oic 0o 000 i0io oo oo o 900 000 Lo ollo 0o oot o 2 o0cococoocoooocoococoooooo O ocooooocoooocoooococoooo-o
) - £ r
©coococococoococococoffococooco0o0000000 000000 O - Soocooooooooocooocoococoffoccocococoocoocococooooooooono-w
o A @ po
cocoooocoocoocoocoofocccocooocoocoocococooocoooo0oo0o-uw e 83@cooocoooocooScocflEcrocmoonmnonaom@oocoomo-u
= = 3 € : =
© ©o oo oocoo © 0o oOfflo © © ©O O ©O 0O 0O 0000000000 o000 o0-T o &0 & e Dl B e B e oo o ads olcas o ols o bl s oo Bl
)
©cocococococooooo ©© 0 0000000000000 00000 00V =
= e ccocococeocococoococoffflococoooo00o00e0O0000000 000 O-U
ccocoococoocooffococococcocococococoocooooooooooooo-n o 5
f) cecocococoocococococfcecoocoocoococcococoececococo0oo0ooocoo0oo o-a
ccocoocococofcccococcocococococoooooooo0oo0oo0o00o0o0-w - =
cocoocooocoococoocooffococcococooocoococococorococo000~000000-0
coocornococfeccocococoocooocoocoococoocooo0oo0oooo-a [~1
oo oooo0o0o0o O 0 00000 OD0O0OO0OO0OCOOO0O0OO0SCOCO OO0 06
cocococococoflccoccocococococoocococoooco0o0o0o00000000-® m =
ccocoococoocoff-cccccocococcccocooocoocooococooooooo o-n
coococoocoocffeoccococoococoococoooococooocooooooo oo oo~
n cococoocoooffllo oo o000 000000000000000O0 0000 O-~
cocococofococococoocococoococoocoo0oo0ooco0oco000o000O0O0GMOOO-0
= (=] oo oo oo © 000 0000000000000 0000 0000 MO SO0
o oo ooy © ©C 00000000 O0CO0O0O0O0O0O0O0O0O0OOO0OOoOOOOo-n o
= 7)) oo oom ©O 00000 CO0O000000000O00O000O00CO0O0OoOo a-n
cocoocofJocococoococoocooocoococoooocooocoocoo0oo0o0o0o0o0o0o0o0o-
Il -
ccoffJoccccccccccccccccccccccccc00000om e evae] ccee o o ol oo @ @ 6 Siala o GG DS SaE S T A A
cofJoccoccococococooocoocoo0ooococoo0o0oo0o0o00o0000000O0O0O0O0O-N = 25 Sue B SUeNE B8 B 2R 8 S B Sl QN PUSiS 16 IS BLIaLS 8 B £ 8.8 18.=m.
o o o O O © 000000 O0O0OCO0OO0O0OO0ODO0O0CS OO0 00000 OO0 0-N
ocfJc ccoccocococooconNoo0cocooco0oo0o0o0o00o0000O0O0COOOO O =)
Flc c cc0cco0 0000000000000 00000O0COCOOSOSOOS OO OC-0 mv © 0000000000 OCO0O0ODOO0OSOOO0OCOCOOOOOC SO0 6 0 o-r
ot e wr g w prie & mren s u T8 N ame e we o B o or oy ey 000000000000 O0O0O0OOCOSDOSOSOCOOCOCOSOOOG6O S oo oo 6-0
0T Z€v S 9 L86¢©Adad2p2ay b6yt (3 wuodbus noamox Aoz - e I I R R T T T e B i R M A I A
anj 0 1T 2 € ¢ 6 9 L 8 6 e g 2p2 4 6y 1 [4| Wwuod©bdJss 3 namx Az
h
© py

Fig. 5 Confusion matrix for InceptionV3 (Picture credit

iscussion

32D

These results clearly highlight the advantages of transfer

which use pre-trained weights from extensive datasets,
both performed noticeably better than Custom CNN. The
compound scaling approach of EfficientNetB0, which
strikes a balance between network depth, width, and reso-
lution for maximum accuracy and efficiency, is responsi-
ble for its exceptional performance.

The confusion matrices offer further insight into each
model’s strengths and weaknesses. EfficientNetB0 and
ResNet50 made very few errors, typically between highly
similar gestures. Custom CNN, although highly accurate,
showed slightly more confusion between such challenging
pairs.

InceptionV3’s markedly higher error rate suggests that,
for this dataset and training setup, it was less effective at
learning the discriminative features required to separate
similar classes. Possible contributing factors include dif-
ferences in input resolution requirements, sensitivity to
overfitting or underfitting, and the specific hyperparameter
tuning applied during transfer learning.

Another important consideration is the practical trade-off
between accuracy and deployment. While Custom CNN
offers a simpler architecture with potentially faster infer-
ence on low-power devices, its slightly lower accuracy
may limit its suitability for highly reliable applications.
Conversely, EfficientNetB0 and ResNet50 deliver both ex-
ceptional accuracy and robust performance, making them
strong candidates for real-world ASL recognition systems.

4. Conclusion

In this study, four deep learning models were evaluated
for American Sign Language fingerspelling recognition
using a balanced dataset of 29 classes. The results show
that transfer learning models, particularly EfficientNetBO,
achieve superior accuracy and robustness compared to
a custom-designed CNN. EfficientNetB0 reached a test
accuracy of 99.8% with minimal misclassifications. These
findings highlight the effectiveness of modern pre-trained
architecture for ASL recognition tasks. Future work may

Dean&Francis

CHI ZHANG

focus on real-time deployment, expansion to dynamic
gestures, or further optimization of inference speed for
deployment on edge devices.

References

[1] Pigou L, Dieleman S, Kindermans P J, Schrauwen B. Sign
Language Recognition Using Convolutional Neural Networks.
European Conference on Computer Vision (ECCV) Workshops,
2015: 572-578.

[2] Molchanov P, Gupta S, Kim K, Kautz J. Hand Gesture
Recognition With 3D Convolutional Neural Networks. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2015: 1-7.

[3] Kopuklu O, Gunduz A, Kose N, Rigoll G. Real-time Hand
Gesture Detection and Classification Using Convolutional
Neural Networks. IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2019.

[4] Koller O. Deep Sign Language Recognition: Modeling
Sequential Dependencies for End-to-End Continuous Sign
Language Recognition. International Journal of Computer
Vision, 2020, 128(5): 1923-1940.

[5] Zhao J, Wang J, Cheng K, Jia K. SL-ResNet: Sign Language
Recognition with Residual Neural Networks. IEEE Access,
2019, 7: 110514-110523.

[6] Ayuraj. ASL Dataset. Kaggle, 2020. https://www.kaggle.com/
datasets/ayuraj/asl-dataset

[7] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for
Image Recognition. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016: 770-778.

[8] Tan M, Le Q. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. International Conference on
Machine Learning (ICML), 2019: 6105-6114.

[9] Szegedy C, Vanhoucke V, loffe S, Shlens J, Wojna Z.
Rethinking the Inception Architecture for Computer Vision.
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016: 2818-2826.

[10] Zhang Z. Improved adam optimizer for deep neural
networks. In2018 IEEE/ACM 26th international symposium on
quality of service (IWQoS) 2018 Jun 4 (pp. 1-2). IEEE.

