ISSN 2959-6157

AERIAL OBJECT DETECTION SYSTEM
WITH DEEP LEARNING

Abstract:

Nowadays micro/mini drones become highly accessible to
the person from all walks of life. The statement mentioned
above poses enormous safety hazards and regulatory
challenges. Due to the smaller radar reflection cross-
sectional area of unauthorized drones, difficult to detect
by radio detection system, which may interfere the normal
takeoff and landing progress of aircraft or leak the location
information of facilities. In recent years, deep learning
methods have made good progress in the field of small
object detection. Therefore, we suggest, in this paper,
a drone detection method that integrates deep learning-
based classification and localization tasks. Using YOLO
v8(You Only Look Once Version 8), deep learning neural
network, and adjusting its architecture and parameters to
better adapt to small object detection such as micro/mini
drones. In addition, to train the neural network model in
this article to classify detected aerial aims, we selected a
multi class flying object dataset that includes birds, drones,
helicopters, and fixed wing aircraft, among which some
may be potential threats.
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the classification by NATO (North Atlantic Treaty
Organization), drones weighing no more than 2 kilo-

1. Introduction

With the rapid development of drone technology, var-
ious types of unmanned aerial vehicles (UAVs) are
being manufactured. The International Civil Aviation
Organization (ICAO) uses this general term to refer
to any unmanned aircraft system (UAS). Function-
ally, drones are categorized into FPV (First Person
View) racing drones and aerial photography drones.
Structurally, they are classified as multi-rotor drones,
vertical take-off and landing (VTOL) drones, fixed-
wing drones, and single-rotor drones. According to

grams are referred to as micro drones, those weighing
less than 25 kilograms are classified as small drones,
and those weighing less than 150 kilograms fall into
Category I drones[1].

Drone activities worldwide are becoming increasing-
ly active. According to the Civil Unmanned Aerial
Vehicle Development Report by the Securities Eco-
nomic Research Institute, the number of registered
drones in China has been increasing annually. By the
end of 2023, the total number of registered drones in
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China reached 1.267 million, representing a 32.2% year-
on-year increase from the end of 2022[2]. However, the
relative ease with which the public can access micro/mini
drones poses significant challenges to safety and confiden-
tiality. For instance, in airport environments, low-flying
birds, illegal or unauthorized drones[3], or other aircraft
during takeoff and landing may conflict with flight paths,
disrupting normal aircraft operations and potentially lead-
ing to safety incidents. Micro/mini drones could also be
acquired by malicious actors to expose images of sensitive
national facilities or carry out sabotage activities. Based
on these examples, I believe it is crucial to propose a
drone detection system capable of classifying and locating
illegal drones.

Drone detection or counter-UAS technologies are gener-
ally divided into four categories: RF signal analysis sys-
tems[4], radio signal detection systems (radar)[5], acoustic
sensors[6], and electro-optical/thermal imaging sensors.
RF analyzers can detect radio communication signals
between drones and ground control stations, capturing
their current positions and operator locations. Radio sig-
nal detection systems, i.e., radar, can precisely detect and
locate drones. However, due to drones’ low-altitude flight,
slow speed, and small radar cross-section, distinguishing
them from noise and clutter is challenging. Acoustic sen-
sors can detect the sound emitted by drones and calculate
their direction but are susceptible to environmental noise.
Electro-optical and thermal imaging sensors are suitable
for detecting small, fast-moving objects at low altitudes,
enabling visual detection and classification of drones.
Nevertheless, their performance is significantly affected
by weather, lighting, and other environmental factors[7].
In this paper, we propose a system based on the YOLO v8
neural network model. By adjusting the model’s hyperpa-
rameters, replacing network modules, and optimizing its
structural framework, we enhance its capability for detect-
ing small targets. This model is trained on a dataset com-
prising images of birds, drones, helicopters, and fixed-
wing aircraft captured by electro-optical camera sensors.
The aim is to accurately detect micro/mini drones and
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similar objects, enabling more efficient and rapid identifi-
cation of potential security threats in a given airspace.

2. YOLO v8 Algorithm Model Design
and Analysis

Due to their relatively small size, unmanned aerial vehi-
cles (UAVs) can easily find cover at low altitudes, while
those at high altitudes are far from the photoelectric
equipment of counter-UAS systems. Consequently, imag-
es of these UAVs often feature a low pixel ratio. There-
fore, in UAV detection systems, the detection targets face
challenges such as small size and extensive occlusion
compared to the background. This makes small target
detection under complex weather conditions and environ-
ments more difficult than general object detection.
YOLOvV8 employs a single-stage object detection ap-
proach, simultaneously predicting bounding boxes and
categories within a single network. It balances recognition
accuracy with speed, making it a real-time and efficient
algorithm among single-stage recognition methods. The
variants include YOLOv8n, YOLOv8s, YOLOv8m,
YOLOVSI, and YOLOv8x. Table 1 presents the results of
YOLOVS’s pre-trained models on the COCO dataset [8].
As shown in Table 1, as the model scales up from small to
large, the network size, depth, and performance increase,
while speed decreases. Comparative analysis reveals that
the YOLOv8n model offers the fastest detection speed,
better meeting real-time requirements. It also demands
fewer computational resources, making it easier to deploy
on devices with limited capabilities.

Given the specific requirements of this study, the system
must achieve effective target detection with low latency (or
fast detection speed). YOLOv8n demonstrates flexibility,
high detection accuracy, and low latency when handling
complex scenarios, ensuring rapid responses. Considering
the dual demands of real-time performance and accuracy,
we selected YOLOvS8n as the base model for this study
and optimized it further to enhance its precision.

Table 1 Training results of different Yolo v8 models

model mAP50-95 Paras/M FLOP/B Time/ms
YOLO v8n 37.3 32 8.7 0.99
YOLO v8s 449 11.2 28.6 1.20
YOLO v8m 50.2 25.9 259 1.83
YOLO v8l 52.9 43.7 437 2.39
YOLO v8x 53.9 68.2 257.8 3.53

3. Improved YOLO v8 Algorithm
Model Construction

To address the issue of lower recognition performance of

the YOLO v8 model in complex open-field environments,
this paper designs the YOLO v8-final object detection
model for detecting high- and low-altitude flying objects
in complex weather conditions, with its network structure
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shown in Fig.1. The improvements include:

- Focus Module Integration: Reduces computational com-
plexity while preserving critical spatial information for
subsequent feature extraction and object detection.

- C3STR Module Addition: Based on the Swin Transform-
er network, this module enhances precision in capturing
small targets.

- SPPCSPC Replacement: Substitutes the Spatial Pyramid
Pooling Fast (SPPF) module with the Cross-Stage Partial
Connection Spatial Pyramid Pooling (SPPCSPC) module
to boost feature extraction capability and computational
efficiency.

- Additional Detection Head: Amplifies feature pixel reso-
lution to improve sensitivity toward minuscule targets.

- Depthwise Separable Convolution (DWConv) Integra-
tion: Replaces partial standard convolution modules to
achieve network lightweighting.

- C2 Module Optimization: Substitutes selected C2F mod-
ules with C2 modules, further reducing model size while
enhancing feature extraction capability. These optimiza-
tions enable the model to operate within the 24GB VRAM
constraints of the experimental RTX 4090 GPU.
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Fig. 1 YOLO v8n-final Convolutional
network
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Fig.2 The convolutional network of the Focus
model

The network structure of the Focus layer is shown in
Fig.2. The Focus layer first performs a slicing operation
on the input feature map. Specifically, it samples the input
feature map at every other pixel along both the width and
height dimensions, resulting in four feature maps with
halved resolution. These four feature maps maintain the
same number of channels as the input but have their spa-
tial dimensions (width and height) halved. Next, the Focus
layer concatenates these four sliced feature maps along
the channel dimension. Since the channel count of each
individual feature map remains unchanged, the concate-
nated feature map has four times the original number of
channels, while the spatial dimensions (width and height)
remain halved. Finally, the Focus layer performs a con-
volution operation on the concatenated feature map. This
convolution, typically using a 3x3 kernel and often fol-
lowed by Batch Normalization and an activation function
(such as SiLU), further extracts features and can adjust the
output channel count as required. By optimizing the fea-
ture extraction process, this layer significantly improves
the model’s detection performance [9].

3.2 C3STR module
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Fig.3 Comparison between the C3 and the
C3STR
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In the fields of deep learning and computer vision,
Transformer-based detection algorithms have become a
revolutionary model architecture. They primarily utilize
the self-attention mechanism to process sequential data,
enhancing the model’s ability to understand temporal and
spatial relationships. The self-attention module, as the
core of the Transformer architecture, enables the model
to capture long-range dependencies more efficiently and
accurately when processing sequence data like images and
text, thereby significantly improving the performance of
detection tasks [10].

Swin Transformer is an innovative model based on the
Transformer architecture, specifically designed for com-
puter vision tasks. By introducing multi-scale processing
and a window-based self-attention mechanism, it effec-
tively overcomes the limitations of traditional Transform-
er models when processing image data. The core idea
of the Swin Transformer lies in decomposing the image
into multiple sub-windows and applying the self-atten-
tion mechanism within these sub-windows. This reduces
computational complexity while maintaining the model’s
sensitivity to global information [11].

Swin Transformer excels in various computer vision tasks
such as image recognition, object detection, and semantic
segmentation. Firstly, it adopts a hierarchical structure,
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similar to the multi-level feature extraction in CNNs,
enabling it to capture visual features from low-level to
high-level. This hierarchical structure progressively re-
duces the resolution of the feature maps while increasing
the receptive field at each layer, allowing the model to
handle image information at different scales. Secondly,
Swin Transformer introduces a strategy called “shifted
windows” for self-attention computation [12].

Fig. 3 shows the network structures of C3 and C3STR.
The C3STR module inherits from the C3 module. While
the C3 module can effectively fuse residual features and
occupies less GPU memory compared to the C2F module,
its Bottleneck module cannot achieve feature interaction
for small targets. This paper replaces the Bottleneck mod-
ule in the C3 module with the Swin Transformer Block to
construct the C3STR module. This enhances the feature
interaction capability for small targets while retaining
the C3 module’s ability to fuse residual features. The im-
proved model employs the C3STR module, leveraging its
shifted window and hierarchical structure to enhance the
resolution of input feature maps, progressively expand the
receptive field of aircraft features, and achieve feature in-
teraction for aircraft between neighboring pixels.

3.3 SPPCSPC module
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Fig.4 SPPCSPC Internal convolutional network
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Fig.5 SPPF internal convolutional network
Fig.4 and Fig.5 illustrate the network structures of the
SPPCSPC and SPPF layers, respectively. The SPPCSPC
module utilizes an SPP layer to capture feature informa-
tion at different scales, enhancing the model’s detection
capability for multi-scale targets. Combined with the CSP
module, SPPCSPC maintains high performance while

reducing computational load and improving the model’s
inference speed [13].

3.4 DWConv module

The main advantage of depthwise separable convolution
lies in reducing computational load and parameter count,
while simultaneously improving model efficiency and
speed. This is because, in depthwise convolution, each
channel only needs to convolve with one filter, unlike
traditional convolution where each channel needs to
convolve with all filters. The dimensionality reduction
applied to input channels by pointwise convolution leads
to a lower parameter count. Consequently, it offers sig-
nificant advantages in terms of reduced model size and
computational requirements, while typically maintaining
strong performance levels [14].

Depthwise separable convolution (DWConv) consists of
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two parts: depthwise convolution and pointwise convo-
lution. In depthwise convolution, each input channel is
convolved with a separate filter (kernel). This means each
input channel generates a corresponding output channel.
Depthwise convolution is mainly used to capture the spa-
tial information of the input data. Pointwise convolution
is a 1x1 convolution operation that convolves all channels
of the input at each position. Pointwise convolution can
be seen as a convolution operation performed on the chan-
nel dimension of the input data, without involving spatial

a—a-

information. It is used to linearly combine the feature
maps generated by depthwise convolution from the indi-
vidual channels. DWConv reduces parameter count and
computational complexity by splitting the traditional con-
volution operation into two steps: depthwise convolution
and pointwise convolution, while maintaining the model‘s
expressive power and performance.

3.5 C2 and C2F module

If ADD=True

CF Bottleneck
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Fig.6 C2F convolutional network Fig.7 Bottleneck network Fig.8 C2 convolutional network

In C2F (Fig.6), the Sequential structure composed of
Bottlenecks (Fig.7) in the original C2 module (Fig.8) is
replaced with a ModuleList, shifting the operation from
sequential to parallel. While the C2 module has fewer
parameters and superior feature extraction capability com-
pared to the C2F module, its gradient flow information
propagation performance is weaker than that of C2F [15].
Therefore, C2F modules are retained in the backbone
network in order to obtain feature maps characterized by
both high resolution and rich semantic information , there-
by improving object detection accuracy. The C2F modules
in the neck are replaced with C2 modules to reduce pa-
rameter count and optimize feature extraction capability,
enhancing the network’s computational efficiency.

4. Experiment and Result Analysis

To validate the effectiveness of the YOLO v8-final model
in detecting aircraft under various weather conditions,
the experiment utilized a public dataset provided by
AhmedMohsen on the drone-detection-new Computer Vi-
sion Project website. This dataset contains nearly 12,000
images featuring fixed-wing aircraft, drones, birds, and
helicopters. Comparative experiments were conducted to
verify the contribution of each improvement strategy to
the model’s detection performance.

4.1 Evaluation Indicators

The experiments in this paper use mean Average Precision
(mAP50), Precision, and Recall to evaluate the accuracy

of the detection model.
Its definition is as shown in the formula

po TP "
TP+ FP

oo TP o
TP + FN
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In the formula: TP represents the number of positive sam-
ples predicted to be in the positive class; FP represents the
number of negative samples predicted as positive classes;
FN is the number of positive samples predicted to be of
the negative class.

4.2 Experimental Environment and Parameter
Settings

The experimental operating system was Ubuntu, and
the specific configuration details are presented in Table
2. During network training, the batch size was set to 8§,
with the input image resolution configured at 640x640.
Training was performed on a GPU for a total of 100 ep-
ochs. Throughout the training process, stochastic gradient
descent was employed to optimize the parameters of the
network model. Parameters including the initial learning
rate, momentum, and weight decay were all maintained as
the default parameters from the original YOLOv8n model.
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Table 2 Experimental environment configuration

Configuration Parameter

Development environment Anaconda+Pycharm

CPU 12 vCPU Intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz
GPU RTX 4090(24GB)

Operating system ubuntu20.04

Operating environment CUDA11.8+Pytorch2.0.0

Programming language Python

4.3 Comparative Experiment

4.3.1 Training Results of YOLO v8n Model

The results of the original YOLO v8n are shown in Fig.9
and Table 3.

metrics/precision(B) metrics/recall(B)

0 50 100 0 50 100
metrics/mAP50(B) metrics/mAP50-95(B)

0.6 1

0.4 1

Fig.10 YOLO v8n-swin convolutional
network
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T
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Fig.9 YOLO train result
4.3.2 Training Results of YOLO v8n-swin Model

As shown in the Fig.10, this model incorporates a Swin-
Transformer dynamic attention mechanism module into
its backbone network, with the training evaluation results
displayed in the accompanying Fig.11 and table 3.
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Fig.11 YOLO v8n-swin train result
4.3.3 Training Results of YOLO v8n-small Model
As shown in the Fig.12, an additional detection head has
been added to the YOLO v8n network architecture in this

model, with its training results and evaluation metrics pre-
sented in the accompanying Fig.13 and table 3.
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Fig.12 YOLO v8n-small convolutional
network
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Fig.13 YOLO v8n-small train result
4.3.4 Training Results of YOLO v8n-final Model

The final training results of YOLO v8n-final are shown in
Fig.14 and Table 3.
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Fig.14 YOLO v8n-final train result
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Table 3 Comparison of results from different models

model mAP50 Precision Recall
YOLO v8n 0.955 0913 0.933
YOLO v8n-swin 0.952 0.900 0.944
YOLO v8n-small 0.955 0.923 0.935
YOLO v8n-final 0.960 0.935 0.950

5. Conclusion

Based on YOLO v8n, this paper proposes a drone
small-target detection algorithm named YOLO v8n-final,
which partially addresses issues including false posi-
tives, high miss rates, and poor real-time performance
in micro-drone target detection. The algorithm enables
small-target detection under complex weather conditions
on devices with limited computational resources.
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