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Abstract:

Aiming at the exponential computational complexity
problem of Nash-MTL in multi-task learning, this paper
proposes a computationally optimized Nash-MTL
framework. This method introduces three core points.
First, there is a phased gradient update mechanism,
which combines cyclic sampling and dynamic random
sampling strategies, and can maintain the optimized
performance while To minimize redundant gradient
computing, secondly, there is a dynamic importance
scheduling model, which assesses task priority by means
of loss change rate and gradient size, thereby intelligently
allocating computing resources, and is also supplemented
by a security recovery strategy. Thirdly, there is a stability
guarantee mechanism with periodic global updates and
abnormal trigger rollback operations. Experiments were
conducted on QM9, NYUv2 and cityscape datasets,
which confirmed the effectiveness of the framework. The
framework can maintain task performance (with a deviation
within 5%) while significantly reducing computing time by
55.4%. These advancements greatly enhance the feasibility
of deploying complex multi-task learning systems in
resource-constrained edge computing environments.

Keywords: Multi-task learning; Gradient optimization;
Nash bargaining solution; Computation Optimization.

1. Introduction

achieve Pareto optimality [1]. Traditional methods
ignore the geometric relationship of gradients and are

In multi-task Learning (MTL), resolving gradient
conflicts among different tasks is a challenge. Previ-
ous studies have been conducted on the optimization
process of gradient direction conflicts. Research
shows that the interference of shared layer gradi-
ents leads to 49-63% of training iterations failing to

unable to effectively solve such conflicts. Nash-MTL
ensures the existence of the Pareto optimal solution
by modeling the gradient equilibrium problem as a
game theory optimization [2]. However, its compu-
tational complexity will increase exponentially with
the number of tasks. Computing resources are scarce,
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and the rational allocation of computing and communica-
tion resources is of great significance. If this is not done,
multi-task offloading will lead to a significant increase in
latency [3], which limits the application of the algorithm
in edge systems.The gradient directions of related tasks
generally remain stable between consecutive training
steps, and the Angle changes are mostly less than 15° [4].
In actual training, Only 20% - 30% of the tasks will show
significant loss changes (|AC/€] > 0.1) [5], which means
that most tasks can safely skip single-step updates. Nash
bargaining shows strong robustness to gradient estimation
errors. Even when the error reaches 20%, the solution de-
viation can still be stably maintained within 5% [2]. Based
on these, this paper proposed a Computational Optimiza-
tion Nash-MTL framework, introducing gradient intelli-
gence and dynamic scheduling mechanisms to reduce the

computational complexity from O(K?) to linear O(mK)

and achieving algorithm improvement.

At present, efficient multi-task learning (MTL) methods
are mainly in these categories. Gradient clipping reduces
the computational cost by randomly discarding the gradi-
ents of certain tasks [6]. This method has been proven ef-
fective in practice, but it lacks theoretical guarantees and
may also cause deviations in the optimization direction.
Feature-level approximation methods can compress the
feature space [7]. The task grouping method divides tasks

(g1)
Task 1

(22)

Input

\O

into multiple subgroups for parallel processing, but its
grouping strategy relies on prior knowledge and its gen-
eralization ability still needs to be improved [8]. In this
paper, differentiated design was to optimize computational
efficiency while ensuring the completeness of the gradient
equilibrium theory.

2. Methodology

2.1 Problem Modeling

For a given task‘s loss function, Nash-MTL determines
the parameter update direction by solving the following
optimization problem.

K
1
AO=Y 0a,g,?512GGa=—. (1)
i1 o
G=[g,&,,.--.-8¢] 1s the task gradient matrix,
and a=[¢q,,...,a,] is the gradient weight vector, ensur-

ing the Pareto optimality of the Nash bargaining solution
[2].The goal of optimization is to reduce the complexity

from O(Kz) to O(mK)by sampling a subset of tasks,

ensuring that the deviation between the approximate A6

and exact solutions A@remains an acceptable bound.

2.2 Gradient Caching Mechanism

O Calculate the new gradient

O Reuse of cached gradients

Fig. 1 Staged Gradient updates.

Introduce a gradient caching matrix G= (&5 8x]
, where gradients are computed in real-time only for the
sampled subset of tasks, while reusing cached values from
the previous step for the remaining tasks.

20 w,.(e(’)) iest o

8" otherwise.

Introducing a dynamic historical gradient caching mech-
anism can significantly reduce the computational cost of
multi-task learning. Similar method Quicksilver’s KV
cache skipping mechanism selectively calculates the
key attention and reuses the historical cache (rather than
performing the complete K calculations). With such op-

erations, a 39.6% reduction in computational load was
achieved on Llama-2, and the precision loss was only 0.2.
Its dynamic cache reuse concept is very similar to that
of gradient caching [9]. Moreover, relevant literature has
demonstrated that the locality of the gradient in the short
term can reduce the computational load by 50% without
affecting convergence [10]. Fig.1 presents the process of
staged updates in the gradient caching mechanism. In this
figure, the method is illustrated. This method only com-
putes new gradients for the m tasks sampled in the cur-
rent batch (like Task 1 and 3), while the remaining tasks
directly reuse the cached historical gradients. It is clearly
visible from the figure that this mechanism reduces the
computational load of each iteration from K times to m



times (m << K), which is consistent with the dynamic up-
date rule in the formula presented in the text.

2.3 Smart Sampling Strategy

Cyclic sampling is fixed-window cyclic scheduling is used
to ensure that all tasks are overwritten once in the step.
SY) = {12modK (¢ +1)?modK,....(t+m—1)?modK} (3)
This method is applicable in scenarios where the impor-
tance of tasks is balanced and can avoid the problem of
outdated gradients caused by some tasks not being updat-
ed for a long time [11]. Random sampling is carried out to
increase the probability of important tasks being selected.

poca s gom 4y pl 4)

Here, vf’) represents the rate of loss

change, mi(’) =| gl.(t) ||, denotes the gradient magnitude,

and a+ f+y=1 is a weighting parameter. The rate of
loss change is adjusted to balance short-term variations
(v,)and long-term trends(pf’_l) )of tasks [12].To place

greater emphasis on the short-term fluctuations of a task,
one can increase « (e.g., a enhances the impact of
loss change) and B (e.g., # amplifies the effect of gradi-
ent magnitude). Conversely, to prioritize the long-term

m
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trend accumulated from the task‘s historical performance,
the weight y should be increased. This allows flexible

balancing between short-term variations (captured by v;)

and long-term trends (reflected by pr) ), which is essen-

tial for dynamic task importance evaluation. The Gradient
Vaccine method reduces the computational load by 40-
60% by dynamically adjusting the task gradient weights,
and at the same time avoids the dominant task suppressing
the weak task, thereby improving the overall performance
of the multilingual model [13].

Fig. 2 shows that random sampling dynamically adjusts
the selection probability based on the importance of the
task, integrating the rate of loss( vf’)) change, gradient
magnitude( m")), and historical performance(p™") . With
the help of weight parameters( &, 5,7), it can flexibly bal-
ance short-term fluctuations and long-term trends to opti-
mize the task selection strategy.The current activity level
of the task can be reflected by the rate of loss vl.(’) change.
If this value exceeds the threshold, it indicates that the
task is in a critical optimization stage, and at this time, the
priority of its sampling should be increased. The gradient
amplitude ml.(’) can measure the scale of parameter update.
Tasks with higher gradient values contribute more to the
overall optimization process. These tasks are often in the
steep area of the loss function after update, so they need
to be processed first.

pPi=>r O
/ Calculate a new

gradient

R

Weighted
Sum

—_—
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Reuse the cache

Fig. 2 Smart Sampling Strategy.

2.4 Periodically full updates
At each step of the experiment, the full-task gradient

calculation( s = {1,...,K} )is carried out to calibrate the

cache error and avoid the divergence of the model caused
by the accumulation of periodic global update strategy
conducts complete gradient calculations at each step.

2.5 Anomaly detection and rollback

The training anomaly is determined by the overall loss
increase in three consecutive steps, and the parameter roll-
back is triggered to recalculate the full gradient.

ifr®) > (Pand ) > o2 99 H(H),?recomputeé .
(%)

This mechanism can effectively deal with the local opti-
mal trap caused by sampling error and improve the stabil-
ity of the model [14].

3. Experimental analysis

3.1 Experimental process

This study conducts experiments for verification on three
standard multi-task datasets: QM9, NYUv2, and City-
scapes. The model training cycle was 200 to 300 rounds
[2]. During the experiment, two main optimization strat-
egies were employed. One approach was to utilize the
gradient caching mechanism, where only the gradient of
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the current task was calculated in each iteration, while the
historical gradient information of other tasks was reused.
Every five training steps, key parameters are normalized
based on changes in task loss. To ensure the stability of
the training process, the system performs a complete gra-
dient update every ten training steps as a safety backup.

3.2 Experimental Results

This solution, with the collaborative integration of partial
gradient update, dynamic task priority and fault protection
mechanism, shows significant advantages and achieves a
substantial improvement in computing efficiency. Orig-
inally, the average processing time per batch was 164-
165 seconds, but now it has been shortened to 73-74
seconds. The computing load (GFM-type Ps) decreased

from 23.6-23.7 to 18.0-18.3. This scheme achieved better
convergence performance in multiple tasks. The seman-
tic segmentation loss was originally 0.432 but has now
significantly declined to 0.012. The depth estimation
loss has increased from 0.635 to 0.035, and the normal
estimation loss has also decreased significantly, reducing
from 0.281 to 0.016. These improvements prove that the
method has excellent effectiveness in balancing compu-
tational efficiency. In Fig.3, after the algorithm improve-
ment of this model, there are some fluctuations in depth
loss, but it is relatively stable. Compared with the original
method(Am%=62.0 in QM9 dataset) [2], Am%=64.09 in
the same dataset in my experiment, the accuracy has de-
creased by 5%.
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Fig. 3 Loss plot.

3.3 Ablation experiments

Table 1. Three Ablation experiments

Ablation Index Optimized Solution After Ablation
Gradient local updates | Time consuming in Single batch 73s-74s 120s-121s
D ic i t

yna.mlc tmportance Time consuming in Single batch 73s-74s 945-95s
sampling
Safety Fallback Mecha-
niasrfly atbac echa Time consuming in Single batch 73s-74s 63s-64s

Table 1 through ablation experiments compares the im-
pact of three Optimized methods on the training time of a
single batch. The results are presented: The optimization
effect of gradient local update is the most prominent, re-
ducing the time about 63.9%. Dynamic importance sam-
pling is also effective, shortening the time about 29.4%.

The safety fallback mechanism, due to the introduction of
additional calculations, slightly increases the time. These
data demonstrate that Gradient local updates perform best
in optimizing computational efficiency, but they need to
be combined with security mechanisms to balance perfor-
mance and stability.



4. Conclusion

The Computation Optimizational Nash-MTL framework
proposed in this paper retains the advantages of Nash
game theory. With the help of the gradient-based intelli-
gent dynamic importance scheduling and security recov-
ery mechanism, the computational complexity is reduced
by 55.4%, and the performance attenuation can be con-
trolled within 5%. This framework shows high efficiency
in multi-task scenarios. Future research should focus on
enhancing the generalization ability of adaptive sched-
uling algorithms and extending multi-task learning to
cross-modal tasks to promote the evolution towards more
complex real-world applications.
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