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Abstract:

Lung cancer remains the main cause of cancer-related
incidence and mortality globally, with more than 2,220,000
newly diagnosed cases annually and a five-year survival
rate of less than 25%. The complexity of diagnosis and
treatment is exacerbated by Intra-tumoral Heterogeneity
(ITH), which drives therapy resistance. Recent advances
in the field of Machine Learning (ML) and Deep Learning
(DL) offer promising solutions by enabling the analysis of
high-dimensional medical data beyond human capability.
This review explores the applications of ML in lung
cancer diagnosis, focusing on Deep Neural Network
(DNN), Convolutional Neural Network (CNN), and
Vision Transformer (ViT)-based models across radiomics,
histopathology, and gene expression analysis. Innovative
techniques such as semi-supervised learning, data
augmentation, and optimization algorithms have enhanced
model performance, achieving high accuracy in classifying
lung cancer subtypes and predicting genetic mutations.
Federated learning emerges as a privacy-preserving
approach for collaborative training across institutions,
addressing critical data security concerns. However,
significant challenges remain, including limited model
interpretability, generalizability across diverse populations,
and integration into clinical workflows. Future research
should prioritize interpretable Artificial Intelligence (Al)
frameworks and privacy-preserving technologies to enable
earlier diagnosis and tailored therapies for lung cancer
patients.

Keywords: Lung cancer diagnosis; deep learning; con-
volutional neural networks.

1. Introduction

Lung cancer, defined as a primary broncho-
genic carcinoma, is a malignant neoplasm aris-

ing from the bronchial epithelium, submuco-
sal glands, or alveolar lining. It represents the
predominant global malignancy in both incidence
and cancer-related mortality. With over 2.20 million
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new cases diagnosed annually [1], approximately 75%
of patients die within five years of diagnosis [1], high-
lighting its severe threat to human life. The complexity of
treatment is significantly compounded by Intra-Tumoral
Heterogeneity (ITH), wherein cellular diversity within tu-
mors promotes resistance to therapy. Over recent decades,
major collaborative efforts have driven advances in can-
cer research, resulting in extensive multimodal databases
that integrate clinical records, radiological imaging, and
genomic sequencing data. However, the rapid growth of
such high-dimensional diagnostic and therapeutic data has
rendered traditional expert-driven analysis insufficient.
Faced with heterogeneous, large-scale datasets, research-
ers increasingly encounter limitations in manually identi-
fying complex biomolecular patterns. This necessitates the
integration of machine learning, which provides scalable
computational frameworks to decipher intricate feature
interdependencies, automate early cancer detection, and
generate clinically actionable insights beyond human ana-
lytical capacity.

Machine Learning (ML) has been widely applied To en-
gineer optimal resolutions for multifaceted conundrums,
such as in the fields of healthcare, finance, environment,
marketing, security and industry. The characteristics of
ML methods are that they can examine a large amount of
data and uncover their correlations, provide explanations,
and detect regularities. ML can help improve the the de-
pendability, efficiency, consistency, and precision of many
disease diagnosis systems [2].

Currently, leveraging machine learning techniques in
the diagnose field mainly focuses on computational bi-
ology and radiomic methods. In computational biology,
deep learning has found use across five major domains:
predicting protein structures and functions, advancing
genome engineering, supporting systems biology and data
integration, and improving phylogenetic analysis [2]. An-
other key area is radiomic methods. Radiomics involves
four core stages: preparing images, delineating tumors,
deriving features, and forecasting clinical outcomes [3].
At present, the main focus of research on lung cancer is
concentrated in the field of imaging. Whether it is based
on chest CT, PET-CT or head MRI, all are analyzed based
on imaging data and then diagnosed. Recent advances in
computational image feature extraction have enabled the
development of features capable of capturing substantially

more information than human visual perception, thereby
accelerating the emergence of radiomics [3].

In the domain of detecting lung cancer, a substantial
amount of have demonstrated the suitability of machine
learning in this area. Some scholars have been able to
make relatively accurate predictions by combining 12
different potential machine learning algorithms with 11
different symptoms of lung cancer [4]. A large number of
models have been introduced into the diagnosis of lung
cancer for experimental use, such as two-dimensional and
three-dimensional CNNs, dual-stream architectures, NLP
models, and visual transformer networks [5]. Riquelme
et al. summarized advanced algorithms and machine
learning architectures in CAD systems for diagnosis of
lung cancer [5]. In addition, several studies have tested
the application of DL in lung cancer diagnosis. A syn-
thetical study by Chiu et al. underlined the use of ML in
lung cancer screening via CXR and chest CT, emphasiz-
ing the FDA-approved Al system that are transforming
fundamentally detection pattern, which demonstrates that
Al detection for lung cancer has now entered the stage of
practical application [6].

This article primarily examines the curation and analysis
of medical imaging datasets for lung cancer. It explores
artificial intelligence applications in diagnosis especially.
The study also critically discussed some key implementa-
tion challenges to inform future advances.

2. Method

2.1 DNN-based Classification

In the area of lung cancer diagnosis, this DNN model is
also considered a classic approach for classification tasks.
Many researchers have expanded upon and conducted
experiments with this model. A study provides a potential
direction for accurate cancer diagnosis by utilizing a large
Kaggle dataset combined with advanced deep learning
methods [7]. Bhatia et al. employed a unique data segmen-
tation method and innovative data processing techniques,
and based on the DNN-based classification, established a
lightweight lung cancer diagnosis model [8]. This article
will elaborate on its usage methods and logic. The Fig. 1
below provides a simple description of their experimental
procedure.
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Fig. 1 The data processing structure used in the experiment [8].

In the pre-treatment stage of the experiment conducted by
Bhatia et al., lung CT images in DICOM format from the
LIDC dataset are used. A RWICWM filter is applied for
denoising, which preserves edge details better than tradi-
tional filters such as Gaussian, Wiener, and Guided filters.
Histogram equalization is then performed to enhance im-
age contrast. Image quality is evaluated using metrics like
PSNR, MSE, and SSIM.

Then in the segmentation phase, Anan improved K-means
partitioning algorithm applying the Serensen—Dice Index
as the distance measure segments the images. This ap-
proach accurately isolates lung nodule regions and is com-
pared with conventional clustering methods (e.g., standard
K-means and density-based clustering) with respect to
detection accuracy and error rates. This is the most re-
markable innovation of this experiment. In the next stage,
pulmonary nodules are further detected using WDSI-LSO,
which integrates a scale parameter following a Weibull
distribution scale factor with a light spectrum optimizer.
Features such as area, volume, overlap tolerance, and
elongation are extracted. If solid nodules are detected, risk
assessment is performed using the PLCOm2012 model,
incorporating environmental factors like smoking and
family history to predict patient survival.

In the final classification stage, using the LUNA16 and
LIDC-IDRI datasets, lung nodules are classified into
categories: normal, benign, primary lung cancer, and met-
astatic lesions. Images, after enhancement and normaliza-
tion, are fed into a semi-supervised and contrastive learn-
ing-based deep neural network (SSCL-DNN). This model
consists of two subnetworks—one for classifier training

and another for feature extraction through contrastive
learning. The final output classifies nodules categorized as
SCLC, NSCLC, or absence of nodules.

2.2 CNN-based Classification

Thangamani M et al. proposed a weighted CNN model
with gene data expression [9]. This team highlights the
critical challenge of early lung cancer prediction by de-
veloping a CNN-based model. The proposed architecture
consists of two feature extraction blocks, each comprising
a 5x5 convolutional tier attached by a 2x2 subsampling
layer, then a 1x1 convolutional tier and a 1x1 subsam-
pling tier. Finally, a softmax function is applied to classify
and predict normal and abnormal cells effectively. In ad-
dition, the team employed Z-score normalization for data
pre-processing and utilized the LFCS(Levy Flight Cuckoo
Search) optimization algorithm for effective gene selec-
tion.

Ausawalaithong et al. applied CNNs to process a gaint
scale dataset of chest X-ray images for anomaly detection
[10]. They investigated the model‘s performance using
three retrained variants evaluated across different datasets,
focusing on accuracy, sensitivity, and specificity. Model
A, which was trained using the ChestX-ray14 dataset, was
effective in detecting lung nodules. Model B, based on the
JSRT dataset, achieved higher specificity but showed rel-
atively lower accuracy and sensitivity. In contrast, Model
C, which was trained on both ChestX-rayl4 and JSRT,
not only demonstrated more consistent performance with
lower standard deviation but also accurately localized
lung cancer. The authors concluded that repeated model
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retraining tailored to specific diagnostic tasks can enhance
performance, especially in scenarios with limited data, as
shown by the superior overall results of Model C.

Da Silva et al. employed a CNN architecture optimized
using the Particle Swarm Optimization (PSO) algorithm
[11]. To ensure fair model comparison across particles,
training and validation were conducted using consistent
datasets. The experimental data was sourced from the
LIDC-IDRI database, and evaluation was carried out
across five distinct test subsets. Among them, Test-1
achieved an precision of 96.54%, The degree of sensitivi-
ty is 87.79%, selectivity is 98.215%.

The study mentioned a CNN model for early lung cancer
diagnosis with CT scan images [12]. The dataset, obtained
from Kaggle, consisted of 967 labeled CT images classi-
fied divided into four groups: adenocarcinoma, large-cell
carcinoma, squamous-cell carcinoma, and healthy tissue
Images were pre-processed by resizing to 64x64 pixels,
noise removal, segmentation, and morphological smooth-
ing to enhance feature extraction. The CNN architecture
included three convolutional tier having 16, 32, and 64
filters respectively, each attached by max-pooling tiers to
decrease spatial dimensions. The extracted features were
reduced to a single dimension and passed through a totaly
connected tier with 260 factors, utilizing softmax activa-
tion to generate probabilistic class assignments in multi-
class tasks. While intermediate layers leveraged ReLU
activations, the output layer adopted distinct nonlinear
processing. Employing Adam optimization and multi-
class cross-entropy loss, the model was trained across 50
epochs using 13-sample batches. The CNN achieved a test-
ing accuracy of 92%, recall of 91.72%, AUC of 98.21%,
and a loss of 0.328.

The team of Mamun et al. mentioned a CNN-based model
using the AlexNet structure for lung cancer diagnosis from
the images of CT scan result collected from hospitals [13].
The model processes CT scans categorized three classes:
normal, benign, and malignant. The dataset consisted 110
lung cancer CT images, 70% for drill and 30% for testing.
AlexNet’s architecture includes several convolutional
tiers, max-pooling tiers, and totaly connected tiers, with
images resized to 227 x 227 x 3 pixels. The study high-
lights the role of CNN layers in feature extraction through
convolution, activation functions such as ReLU, pooling
for downsampling, and classification via fully connected
layers with softmax activation.

Han Li proposed FLE-CNN, an high-level CNN model
designed to detect cancer in histopathology images [8].
This model incorporates a residual fusion unit to capture
comprehensive contextual information and employs a
dual-domain attention and information refinement mecha-
nism. In a five-class cancer classification task, FLE-CNN
outperformed other state of the art deep learning structure,

achieving enhanced sensitivity, character, F1-score, and
accuracy.

2.3 ViT-based Classification

Kumar, A. et al. proposed a VIT model for the classifica-
tion of lung cancer diagnosis and colon disease using the
LC25000 histopathological image dataset, which consist
of 25,000 color images across 5 classes [14]. All the fig-
ures was split into training (80%) and testing (20%) sub-
sets. The ViT model divides input images into fixed-size
patches (16x16), which are linearly embedded and com-
bined with positional embeddings before being processed
through multiple transformer encoder layers incorporating
multi-head self-attention, multilayer perceptrons, and
layer normalization. The model used a frozen pre-trained
transformer as a feature extractor with a new classification
head added on top. Various hyperparameters, including
batch size, patch size, number of epochs, and activation
functions, were tuned, with experiments conducted using
patch sizes of 4, 8, and 16, batch sizes of 16 and 32, and
epochs ranging from 24 to 50. The best model configura-
tion achieved a high accuracy, supported by strong quan-
titative evaluation metrics including precision (positive
predictive value), recall (sensitivity), F1-score (harmonic
mean), and ROC-AUC (area under receiver operating
characteristic curve) [14]. strategies for expanding data-
sets including rotation, flipping, and zooming were also
applied to enhance training. The study demonstrates that
the ViT architecture, leveraging self-attention mechanisms
instead of traditional convolutional layers, is highly effec-
tive for cancer diagnosis on images which collected from
hospital.

Not only that, there are also studies presenting results af-
ter practical application, such as the retrospective analysis
by Luoqi Wen et al. [15]. They published a retrospective
study that analyzed lung adenocarcinoma patients patients
who received CT-guided transthoracic biopsies or surger-
ies at the First Affiliated Hospital of Wenzhou Medical
University from 2017 to 2022, focusing on predicting
EGFR mutation status. A total of 525 patients meeting
strict inclusion criteria—including pathological confirma-
tion, a single malignant nodule per patient, and CT scans
performed within one month of invasive procedures—
were enrolled as the internal dataset. An external valida-
tion set comprising 30 patients was incorporated from
the publicly available TCIA dataset, with slightly relaxed
timing criteria due to limited sample size. Preprocessing
of CT images involved scaling the annotated tumor ROIs
to 224x224 pixels and normalizing their Hounsfield Unit
(HU) values, followed by data augmentation (random ro-
tation, flipping, zooming) to improve model robustness. A
Vision Transformer model (ViT-B/16) pretrained on large-
scale datasets was fine-tuned using transfer learning over



400 epochs with the Optimization was performed using
Adam, with cross-entropy serving as the loss function.
demonstrating strong generalization ability across datasets
[15]. Grad-CAM provided visual attention maps high-
lighting tumor regions influential to the model’s EGFR
mutation predictions, potentially aiding clinical deci-
sion-making. Compared to traditional clinical and radiom-
ics-based approaches, the deep learning model effectively
captures complex spatial information without extensive
feature engineering. The constraints of this study involve
its single-center retrospective design, a limited number of
cases, and the utilization of CT images with a slice thick-
ness of 5 mm. Future work should explore larger mul-
ticenter cohorts and thinner-slice CT imaging to further
enhance predictive accuracy. Overall, this study presents a
promising non-invasive, CT image-fundimentaled ViT DL
structure for accurate EGFR mutation status prediction in
lung glandular carcinoma, with potential applications in
personalized medicine.

3. Discussion

Although Al and machine learning have made great
strides in lung cancer diagnosis, several critical challenges
remain, mainly concentrated in three key areas: inter-
pretability, applicability, and privacy. First, the lack of
interpretability in many Al models hinders clinicians’ trust
and understanding, limiting their integration into routine
clinical decision-making. Second, applicability issues
arise from the variability in imaging protocols, limited
generalization among heterogeneous patient groups and
clinical contexts, and the scarcity of gaint, well-annotated
datasets necessary for robust model training. Lastly, priva-
cy concerns related to the sensitive nature of medical data
pose significant barriers to data sharing and large-scale
collaborative research, which are essential for improving
Al performance and clinical adoption. Resolving these
issues is critical to enabling Al to achieve its maximum
impact in lung cancer diagnostics.

Despite the impressive performance of DL method in lung
cancer detection, piece of the major unresolved challenges
remains their lack of interpretability. Current models, such
as CNNs and their variants, often function as ,,black box-
es,” providing little insight into how specific predictions
are made. Although visualization approaches including
saliency maps, Grad-CAM, and feature activation analy-
sis have been applied to highlight areas of interest within
medical images, these methods are often post hoc and may
not align with the actual diagnostic reasoning of radiolo-
gists. Furthermore, the features extracted by deep learning
models typically lack clear medical definitions, making
it difficult for clinicians to validate or rely on these out-
puts. This gap between model predictions and clinically
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interpretable biomarkers limits the integration of Al into
routine practice and hinders trust among healthcare pro-
fessionals. As a result, developing intrinsically interpre-
table models and incorporating domain-specific medical
knowledge into network architectures have become key
research priorities in the field of medical imaging [16].
Deep learning-based lung cancer detection faces a critical
challenge in the form of constrained model generalizabil-
ity. Many models are trained on specific datasets that do
not fully represent the diversity of patient populations and
clinical environments, leading to decreased performance
when applied to new or different settings. Furthermore,
much of the research emphasizes detection accuracy while
under-addressing tumor characterization, which is vital
for early and precise diagnosis. The opaque “black box”
nature of deep learning models further complicates clini-
cal adoption by limiting transparency in decision-making
processes. In addition, concerns regarding data security
and patient privacy present substantial obstacles to data
sharing and collaborative research efforts, which are es-
sential for model improvement and validation. Addressing
these issues through improved generalization techniques,
robust privacy protections, and mitigation of dataset bias-
es is essential for advancing Al applications in lung cancer
diagnosis [17].

Future work in machine learning for lung cancer diagno-
sis should focus on integrating expert systems and domain
knowledge to enhance model interpretability and clinical
relevance. Additionally, federated learning offers a prom-
ising approach to preserve patient privacy while enabling
collaborative training on distributed datasets from multi-
ple institutions. By advancing these areas, machine learn-
ing can achieve more accurate, reliable, and privacy-con-
scious lung cancer detection, ultimately supporting earlier
diagnosis and personalized treatment strategies in clinical
practice.

In lung cancer diagnosis, incorporating domain expertise
is essential, particularly for medical image analysis. Con-
ventional approaches depend on manually engineered fea-
tures—such as morphological characteristics, texture pat-
terns, and contextual cues—that serve as important prior
information to enhance detection accuracy [18]. Although
deep learning excels at automatic feature extraction, it of-
ten faces challenges like overfitting and limited interpret-
ability when applied to small medical datasets. By fusing
expert knowledge with deep learning models, these lim-
itations can be effectively addressed, leading to improved
detection accuracy and robustness [18]. For example, in-
corporating shape features (e.g., HOG), texture descriptors
(e.g., LBP and Haralick), and environmental context helps
better distinguish benign from malignant nodules and
reduces false positives [18]. Looking ahead, the combina-
tion of domain expertise and advanced machine learning
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is likely to be a key direction in lung cancer diagnosis, en-
abling more precise, reliable, and personalized healthcare
solutions.

Federated learning has emerged as a critical solution for
the future of lung cancer diagnosis within the evolving
landscape of smart healthcare systems. By allowing col-
laborative model development across different centers
without transmitting sensitive patient information, feder-
ated learning effectively mitigates privacy risks associat-
ed with medical data sharing. For instance, Abbas et al.
proposed a fused weighted federated profound extreme
ML approach integrated with edge computing, achieving
a lung cancer prediction accuracy of 97.2%, surpassing
state-of-the-art methods [19]. This approach not only
ensures data privacy but also facilitates fast and efficient
data transmission, making it highly suitable for Healthcare
5.0 environments [19]. As medical Al continues to devel-
op, federated learning will be indispensable for balancing
robust model performance with stringent data privacy re-
quirements.

4. Conclusion

In summary, machine learning and artificial intelligence
have substantially advanced lung cancer diagnosis by en-
abling the analysis of complex, high-dimensional medical
data beyond human capability. Despite notable progress
with deep learning models such as CNNs and Vision
Transformers, challenges persist regarding interpretabil-
ity, generalizability, and data privacy. The integration of
expert knowledge into Al frameworks enhances model ro-
bustness and clinical applicability, while federated learn-
ing presents promising solutions to privacy concerns by
facilitating collaborative training without direct data shar-
ing. Future research should prioritize the development of
interpretable models, improve adaptability across diverse
clinical environments, and leverage privacy-preserving
methodologies. Collectively, these efforts will promote
more accurate, reliable, and personalized lung cancer di-
agnosis, ultimately improve patient outcomes and advance
precision medicine in oncology.
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