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Abstract:

Brain tumor classification based on Magnetic Resonance
Imaging (MRI) images is essential for early diagnosis, yet
traditional manual interpretation remains time-consuming
and error-prone. This research delves into the ways in
which deep learning models for brain tumor classification
are impacted by changes in learning rate, optimizer, and
batch size. The backbone model was created by training on
a Kaggle brain MRI dataset that contained 3,264 grayscale
images of four categories: glioma tumor, meningioma
tumor, pituitary tumor, and no tumor. Preprocessing
included normalization, grayscale-to-RGB conversion, and
data augmentation. Using weights pre-trained by ImageNet,
transfer learning was implemented. The model’s final layer
was adjusted for four-class output with Softmax activation.
Experiments were conducted across four learning rates,
two optimizers, and five batch sizes. There were 50 training
iterations for each configuration, with validation loss
serving as the basis for early termination. The following
metrics were used to assess performance: recall, accuracy,
precision, F1-score, and confusion matrices. Experimental
results show that Adam generally delivers more stable and
accurate outcomes than Stochastic Gradient Descent (SGD)
under similar conditions. Higher learning rates combined
with moderate batch sizes led to optimal performance.
Pituitary tumors were accurately identified, while no_tumor
and meningioma were often confused. These findings
demonstrate how crucial hyperparameter adjustment is to
enhance the accuracy of deep learning-based Identifying
brain tumors.

Keywords: Brain tumor classification; EfficientNetBO;
Magnetic Resonance Imaging (MRI).
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1. Introduction

Neurology has some of the most serious and life-threaten-
ing conditions, including brain tumors. Cells in the brain
grow abnormally and uncontrollably, according to the
characterization. These tumors can disrupt vital neurolog-
ical functions, cause seizures, and in many cases, lead to
death. According to data from the World Health Organi-
zation (WHO), brain and central nervous system tumors
caused over 300,000 new cases worldwide in 2020. result-
ing in approximately 250,000 deaths [1]. glioma tumors,
meningioma tumors, and pituitary tumors are the most
common types of brain tumors, with either benign or ma-
lignant classification being the norm. Glioblastoma mul-
tiforme, one of the most aggressive forms, has a dismal
five-year survival rate below 10% [2].

Detecting brain tumors at an early stage is critical to en-
suring timely treatment. Traditionally, this relies heavily
on radiologists manually examining Magnetic Resonance
Imaging (MRI) scans require a lot of effort and take a lot
of time that can vary from one specialist to another. In
this situation, Artificial Intelligence (Al), especially deep
learning models, can become useful assistants. These
models can learn to extract meaningful features from huge
amounts of imaging data and support clinicians in making
faster, more reliable diagnostic decisions. By doing so, Al
not only improves workflow efficiency but also minimizes
the potential for human error [3]. In view of the global in-
crease in brain tumor cases, integrating Al into diagnostic
systems is both timely and essential.

Over the past decade, deep learning has revolutionized
many scientific disciplines. Breakthroughs such as Ope-
nAl’s GPT-4 in natural language processing and Deep-
Mind’s AlphaFold in protein structure prediction have
showcased in some complex cognitive tasks, machine
learning models can match or surpass human perfor-
mance [4, 5]. In healthcare, deep learning algorithms have
demonstrated promising results across various diagnostic
domains. For example, neural networks have been suc-
cessfully applied to detect pneumonia in chest X-rays [6],
evaluate cardiac risks [7], and diagnose diabetic retinopa-
thy from retinal images [8].

The field of brain tumor classification has also witnessed
significant advancements. In 2016, Pereira and colleagues
presented a Convolutional Neural Network (CNN)-based
approach for analyzing brain tumors using MRI data,
which showed marked improvements over classical im-
age processing methods [9]. Subsequently, Afshar et al.
introduced capsule networks (CapsNet), which enhanced
the model’ s ability to preserve spatial hierarchies, leading
to more accurate tumor classification [10]. More recent
studies have leveraged attention mechanisms and multi-

scale architectures to refine performance even further [11].
Despite these achievements, much of the current literature
has centered around improving model design and boosting
accuracy. However, the effect of tuning hyperparameters,
such as learning rate, optimizer selection, and batch size,
on classification results have not received the attention
it deserves. These parameters play an important role in
training dynamics and model generalization, and under-
standing their influence is crucial for practical deploy-
ments [12].

This paper aims to conduct a detailed analysis of how dif-
ferent hyperparameter settings influence the performance
of neural network models in classifying brain tumor imag-
es. Using well-established brain MRI datasets, deep learn-
ing model called EfficientNetBO across a range of rates
that can be learned (0.0001, 0.001, 0.01, 0.1), optimizer
algorithms (SGD and Adam), and batch sizes (8, 16, 32,
64, 128) are evaluated. Model effectiveness was assessed
through multiple indicators, including overall accuracy,
class-level precision and recall, the F1 metric, and confu-
sion matrix analysis.

2. Method

2.1 Dataset Preparation

Kaggle was the source of the Brain Tumor Classification
dataset [13]. Collection contains 3,264 grayscale MRI
images sorted by category, with glioma tumor, meningi-
oma tumor, pituitary tumor, and no tumor. Brain tumors,
which make up 85% to 90% of all primary central ner-
vous system (CNS) tumors, are depicted in the dataset as
real-world clinical challenges. The five-year survival rate
remains low, approximately 34% for males and 36% for
females, emphasizing the urgency of early and accurate
diagnosis. Magnetic Resonance Imaging continues to be
the gold standard in diagnosing brain tumors. However,
the time-consuming and error-prone manual interpretation
process for radiologists is caused by the intricate struc-
ture of brain tissues and the visual similarities between
different tumor types. The five-year survival rate remains
low, approximately 34% for males and 36% for females,
emphasizing the urgency of early and accurate diagnosis.
MRI remains the most effective modality for brain tumor
detection. However, manual interpretation by radiologists
involves a lot of time and is prone to errors due to the in-
tricate structure of brain tissues and the visual similarities
among different tumor types.

Preprocessing steps included normalization of pixel values
to the [0,1] range, enhancing training stability and con-
vergence speed. The dataset was partitioned into training
(88%) and testing (12%) subsets. In order to improve the



training data and prevent overfitting, various techniques,
such as horizontal and vertical flipping, rotation, zooming,
and brightness adjustments, were utilized to simulate re-
al-world variability in medical imaging.

2.2 EfficientNetB0-Based Classification

Convolutional neural networks have proven highly ef-
fective for image classification, primarily due to their
capability to extract multi-level spatial features from
input images. The EfficientNetBO model was cho-
sen as the backbone network for this investigation.

The network’s depth, width, and input resolu-
tion are all balancedly scaled by this architecture us-
ing a compound scaling technique. Such design allows it
to achieve high accuracy while maintaining computational
efficiency [14]. Swish activation functions and Mobile
Inverted Bottleneck Convolutions (MBConv) are also
included in EfficientNetBO to enhance performance and
lower parameter overhead. To take advantage of prior
knowledge, the network was initialized with pre-trained
ImageNet weights, implementing transfer learning. The
final dense layer was modified to produce four outputs,
corresponding to the target classes. To make the model ap-
propriate for multi-class classification, a Softmax activa-
tion function was used to this layer, converting raw scores
into class probabilities.

2.3 Implementation Details

The entire model development and experimentation pro-
cess was carried out using TensorFlow 2.x with the Keras
high-level API. This study methodically investigated how
important hyperparameters, such as learning rate, opti-
mizer, and batch size, impact the model’s classification
performance. Four learning rates, 0.0001, 0.001, 0.01,
and 0.1, were evaluated to examine their effects on con-
vergence speed and accuracy. In addition, the suitability
of Stochastic Gradient Descent (SGD) and Adam for this
task was determined by comparing two commonly used
optimization algorithms. To assess the impact on training
stability and model generalization, some batch sizes were
tested, such as 16, 32, 64, and 128.

Early stopping was implemented to prevent overfitting
and ensure optimal model performance during each train-
ing session, which was run for 50 epochs. For multi-class
classification problems, categorical cross-entropy was
used as the loss function. Although the original dataset
consisted of grayscale images, each image was converted
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into a three-channel format by duplicating the grayscale
channel. This preprocessing step ensured compatibility
with EfficientNetB0’s input requirements, resulting in an
input shape of (224, 224, 3).

To comprehensively evaluate the model’ s effectiveness,
multiple performance metrics were adopted. Accuracy
was used to measure the predictability of predictions as
a whole, while precision assessed the proportion of posi-
tive predictions that are true and those that are not. Recall
quantified the percentage of true positive predictions
among all actual positive cases. The Fl-score, as the har-
monic mean of precision and recall, provided a balanced
measure of the model’s predictive ability. Moreover, the
confusion matrix was analyzed to show the distribution of
prediction errors among different tumor classes, providing
valuable insights into the model’s specific strengths and
weaknesses. Finding the best hyperparameter settings and
gaining a better understanding of the model’s behavior
under varying training conditions is possible with the use
of these evaluation metrics as a robust framework.

In addition, this study also generated a series of visualiza-
tions to analyze their effects on key performance metrics.
By varying learning rates, optimizers, and batch sizes, the
model exhibited significant differences in classification
outcomes across the metrics of accuracy, precision, recall,
and Fl1-score. These variations were clearly reflected in
the curve’s charts, as well as in the confusion matrices.

3. Results and Discussion

3.1 Comparison of Adam and SGD Optimizers

3.1.1 General trend with Adam optimizer

Models trained with larger learning rates (LR = 0.01 and
0.1) generally outperformed models with smaller learning
rates (LR = 0.0001 and 0.001) using the Adam optimizer.
As shown in Fig.1, the precision-macro values for LR =
0.01 and LR = 0.1 are consistently higher than those for
smaller LRs. This suggests that higher learning rates help
the model converge more effectively with Adam.
Regarding batch size, performance improves as batch size
increases up to a point (typically around 40-60), after
which it stabilizes or slightly degrades. Fig.2 shows that
the accuracy curve for LR = 0.01 increases with batch size
and flattens beyond a certain threshold, indicating an opti-
mal batch size range.
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Fig. 1 The influence of learning rates on precision macro based on the Adam optimizer (Picture
credit : Original)
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Fig. 2 The influence of batch size on accuracy using the EfficientNetB0 model under the Adam
optimizer (Picture credit : Original)
3.1.2 General trend with SGD optimizer 0.1) tended to perform better on average. As shown in

Fig.4, recall-macro for LR = 0.1 and 0.01 was generally

When using the SGD optimizer, performance trends were i :
higher than for smaller LRs, though not consistently.

more unstable. In Fig.3, precision-macro values across
different learning rates fluctuated more significantly with
changing batch sizes. For instance, LR = 0.001 shows a
dip followed by a rise, suggesting sensitivity to parameter
tuning. Despite variability, larger learning rates (0.01 and
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PRECISION_MACRO vs Batch Size (Optimizer=5GD)
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Fig. 3 The influence of batch size on precision macro based on the SGD optimizer (Picture

credit : Original)
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Fig. 4 The influence of batch size on recall macro based on the SGD optimizer (Picture credit :

3.2 Impact of Learning Rate

3.2.1 Small learning rates (0.0001 and 0.001)

Models with small learning rates generally showed low-

Original)

were consistently lower at LR = 0.0001 and 0.001 (Fig.1,
Fig.5), and similar trends were observed with SGD (Fig.
3). This indicates limited gradient updates and the possi-
bility of getting stuck in sub-optimal solutions.

er performance. With Adam, precision and recall values
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RECALL_MACRO vs Batch Size (Optimizer=ADAM)
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Fig. 5 The influence of learning rate on
recall_macro based on the Adam optimizer
(Picture credit : Original)

3.2.2 Large learning rates (0.01 and 0.1)

With larger learning rates, Adam achieved higher preci-
sion, recall, and F1 scores. Fig.5 illustrates better classifi-
cation results under LR = 0.01 and 0.1. For SGD, results
were more erratic, but performance was still better on av-
erage at higher LRs. However, instability can occur with
very large learning rates in SGD.

3.3 Optimal Batch Size Analysis

With Adam, performance improved as batch size in-
creased from 10 to about 40—60 and then plateaued, as
seen in Fig. 2 and Fig. 5. This suggests that a batch size in
this range balances computational cost and model perfor-
mance.

For SGD, performance was more volatile. While moder-
ate batch sizes (20-60) provided better results on average,
identifying an optimal size was difficult due to frequent
fluctuations (Fig.3, Fig.4) .

3.4 Confusion Matrix Analysis: Tumor Classifi-
cation Details

3.4.1 Misclassification patterns by tumor category

Fig. 6 illustrates that the no_tumor category was consis-
tently prone to misclassification, frequently being con-
fused with meningioma_ tumor. This implies a notable
degree of feature similarity between non-tumor samples
and meningioma cases, posing a persistent challenge for

classification models. In contrast, pituitary tumor samples
were reliably and correctly classified in most configura-
tions, as indicated by prominent diagonal values in the
confusion matrices. This suggests that features associated
with pituitary tumors are more distinct and easier for the
model to learn.
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Fig. 6 The influence of class type on confusion
matrix based on the misclassification between
no tumor and meningioma tumor (Picture
credit : Original)

3.4.2 Optimizer comparison: Adam vs. SGD

When using the Adam optimizer, misclassifications be-
tween no_tumor and meningioma_tumor decreased grad-
ually as batch size increased at a learning rate of 0.01. In
Fig.7, there are four different batch sizes from 16 to 128
(each multiplied by 2) to compare the differences in mod-
el performance on image classification tasks. This trend
highlights Adam’s ability to enhance feature discrimina-
tion when training on larger batches.

Furthermore, at a higher learning rate of 0.1, Adam also
improved the separation between glioma tumor and
meningioma_tumor, as shown in Fig. 8. In contrast, the
SGD optimizer exhibited highly unstable classification
behavior. Even under the same learning rate (e.g., LR =
0.1), confusion between glioma and meningioma fluctuat-
ed substantially as batch size varied (Fig.9) underscoring
SGD’s sensitivity to batch-related noise and its difficulty
in consistently learning discriminative features.
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Fig. 7 The influence of batch size (ranging from 16 to 128) on the confusion matrix based on
the Adam optimizer with a learning rate of 0.01 (Picture credit : Original)
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Fig. 8 Confusion matrix with a high learning rate (0.1) using the Adam optimizer and a batch
size of 128 (Picture credit : Original)
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Fig. 9 The influence of batch size (ranging from 16 to 128) on the confusion matrix based on
the SGD optimizer with a learning rate of 0.1 (Picture credit : Original)

3.4.3 Learning rate and batch size interaction

At lower learning rates (0.0001 and 0.001), both opti-
mizers struggled to effectively distinguish between no
tumor and meningioma_tumor, as evidenced by persistent
off-diagonal errors ,as seen in Fig. 10. This may be due to
insufficient gradient updates, limiting the model’s ability

to refine subtle feature differences.

At higher learning rates (0.01 and 0.1), Adam exhibited
steady improvements with increasing batch sizes, con-
firming its robustness and adaptability. On the other hand,
SGD’s performance remained inconsistent, suggesting
its greater susceptibility to training instability at elevated
learning rates or batch sizes, as seen in Fig. 11.



glioma_tumor 4

meningioma_tumor -

True
8 8

no_tumor 4 30
20
pituitary_tumor 10
0
$ 3 3 S
o 5 g
Q)é‘ Q)é‘ & c,é‘
p D/ 06‘31 &7 ‘?(.\1
& S &
& <
&
Predicted

Dean&Francis

WEIYE DONG

glioma_tumor

meningioma_tumor

8

v
=2
E

no_tumor

pituitary_tumor

\\06‘ & ® s@d 3
’ &

Predicted

Fig.10 The influence of optimizer type on confusion matrix based on a batch size of 64 with
different learning rates (Adam: 0.001, SGD: 0.0001) (Picture credit : Original)
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Fig.11 The influence of optimizer type on confusion matrix based on a batch size of 64 with
different learning rates (SGD: 0.1, Adam: 0.01) (Picture credit : Original)

4. Conclusion

The performance of the EfficientNetB0 model in classify-
ing brain tumor images from MRI is investigated in this
study by examining the influence of learning rate, opti-
mizer, and batch size. The Adam optimizer, when paired
with higher learning rates (0.01 and 0.1) and moderate
batch sizes (20-60), results in better stability and a sig-
nificant reduction in misclassification between no tumor
and meningioma tumor. In contrast, the SGD optimizer
exhibits greater performance fluctuations. Among the
tumor types, pituitary tumors are easier to identify due to
their distinct features, whereas no tumor and meningioma
tumor are more difficult to distinguish due to overlapping
characteristics. These findings offer valuable guidance for

hyperparameter tuning in Al-assisted brain tumor diagno-
sis and contribute to improving diagnostic efficiency and
accuracy.

Although this study offers helpful informa-
tion about the impact of hyperparameters on brain tumor
classification, it still has some limitations. The first step
was to train and test the model on a single public dataset,
which may not accurately represent the variability in real
clinical settings. Second, only one network architecture
(EfficientNetB0) was explored, limiting comparisons
across models. In future work, expanding the dataset with
more diverse samples and testing across multiple models
or medical centers could improve generalizability. Inte-
grating explainable Al would improve clinicians’ com-
prehension of the method used by the model for making
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decisions, enhancing trust and clinical applicability.
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