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Abstract:

Cardiovascular disease (CVD) remains one of the leading
global causes of mortality, highlighting the critical need for
early prediction to reduce fatality rates. This study utilizes
a publicly available CVD dataset to develop and compare
three supervised learning models—Lasso-regularized
logistic regression, random forest, and an ensemble model
(Stacking)—for assessing individual disease risk. Through
comprehensive preprocessing, including interaction terms
and dummy variable encoding, this research enhanced
model expressiveness and feature representation. The
experimental results demonstrate robust predictive
performance across all models, with the Stacking ensemble
achieving the highest accuracy (90.00%), surpassing
logistic regression (87.78%) and random forest (89.44%).
Feature importance analysis further reveals ST depression
induced by exercise (Oldpeak), Slope of peak exercise ST
segment (ST_slope), and maximum heart rate achieved
during exercise (MaxHR) as the most influential predictors.
These findings not only validate machine learning’s
effectiveness in CVD risk assessment but also emphasize
the value of feature engineering and model assembling in
boosting predictive accuracy. The study provides a reliable
framework for clinical decision support, potentially
enabling earlier interventions and improved patient
outcomes.

Keywords: Cardiovascular disease prediction; Lasso lo-
gistic regression; Random forest; Machine learning.

1. Introduction

Cardiovascular Diseases (CVDs) remain the leading

deaths). Projections indicate a 73.4% increase in
crude mortality rates by 2050 [1]. While traditional
risk assessment tools such as the Framingham Risk

cause of death globally, accounting for 31% of annu-  g.ore and ASCVD model have laid the groundwork

al mortality worldwide (approximately 17.9 million

for preventive strategies, they exhibit notable limita-
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tions in capturing nonlinear relationships, incorporating
novel biomarkers, and addressing multicenter data hetero-
geneity [2, 3]. For instance, these models often overlook
psychosocial factors (e.g., depression) and synergistic ef-
fects among metabolic markers (e.g., triglyceride-glucose
index) [4, 5].

Recent advances in Machine Learning (ML) have demon-
strated remarkable performance in CVD risk prediction.
For example, ML algorithms leveraging electronic health
records achieved 91.7% accuracy in hypertension risk
prediction, while deep learning models outperformed
conventional methods in predicting 2-year post-myocar-
dial infarction survival [6]. In a UK Biobank study of
229,000 participants, integrating clinical features with
metabolomic data significantly improved the C-index for
CVD mortality prediction to 0.822 [7,8]. Additionally,
dynamic ECG analysis enabled real-time myocardial isch-
emia monitoring post-PCI, achieving 73.6% accuracy [5].
However, variability in diagnostic standards and popula-
tion structures across centers poses challenges for model
generalization and multicenter data integration [3]. A 15-
year cohort study revealed that individuals with high total
cholesterol variability faced a 20% independent increase
in CVD risk, suggesting that fixed-threshold models may
underestimate risk in high-variability subpopulations [9].
Progress has also been made in model interpretability. A

study of 5.4 million fatty liver patients combined ML with
logistic regression to predict carotid plaque formation,
achieving an AUROC of 0.831 using just 5 key features
(e.g., age, LDL-C) [7]. Similarly, SHAP value analysis
in a Chinese diabetic cohort identified age and cystatin
C as top predictors, with the model’s Harrell’s C-statistic
(0.923) significantly surpassing Cox regression (0.890) [6].
Nevertheless, generalizability remains limited due to sin-
gle-center sampling or lack of ethnic diversity (e.g., UK
Biobank) [7, 8].

This study analyzes a multicenter CVD dataset (n=918)
collected from four regions, incorporating 11 clinical
features with interaction analysis to enhance predictive
performance. The proposed framework aims to develop an
interpretable and robust risk assessment model for early
intervention in cardiovascular care.

2. Data Description

This study integrates five previously unmerged public
datasets from Kaggle/UCI repositories to create one of
the largest multicenter cardiovascular datasets in current
research, encompassing 11 key clinical features for heart
disease prediction [10]. The original data sources are
shown in Table 1.

Table 1. Data Sources and Record Counts for the Multicenter Cardiovascular Dataset

Original Data Source Number of Record
Cleveland 303
Hungary 294
Switzerland 123
VA Long Beach 200
Stalog (Heart) 270
Total (After Merging) 918

Note. The initial dataset included 1,190 records before removing 272 duplicates.

3. Variable Definitions

The variables in the research are essential for predicting
cardiovascular disease. They include basic demographics,
clinical measurements, and health outcomes. Each vari-
able is defined to ensure clarity and reproducibility of the
study‘s predictive model.

The study utilizes a harmonized cardiovascular disease
dataset (n=918) sourced from the UCI Machine Learning
Repository, comprising 11 key clinical features. These
include demographic variables (Age, Sex), cardiovas-
cular indicators (Chest Pain Type categorized as Typical

angina (TA), Atypical angina (ATA), Non-anginal pain
(NAP) or Asymptomatic (ASY); Resting Blood Pres-
sure (RestingBP); Cholesterol levels, metabolic markers
(FastingBS), electrocardiographic measurements (Rest-
ingECG results including Normal, ST abnormalities or
LVH), exercise response parameters (Max HR achieved,
Exercise Angina occurrence, Oldpeak ST depression), and
diagnostic outcomes (Heart Disease status). The dataset
also incorporates functional capacity assessments through
ST Slope measurements during peak exercise (Up, Flat,
Down). This comprehensive feature set enables multi-
dimensional analysis of both traditional risk factors and



functional cardiovascular parameters for robust predictive
modeling.

4. Data Preprocessing

The outliers of the data set are detected, and the box dia-
gram of the numeric data in the data set is drawn, and the
obvious outliers are observed through the image. After
that, use the Z-score method to detect abnormal values.
Those with Z-score greater than 3 or less than -3 are con-
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sidered abnormal values. Clean up these abnormal values
and delete them. Finally, the classification variable is con-
verted into a dummy variable. The purpose is to convert
the classification variable into a numerical form, so that it
is easier to process these data later.

Table 2 provides the encoding and descriptions of the
variables used in the cardiovascular disease prediction
model. This encoding is essential for statistical analysis
and machine learning algorithms to process categorical
data effectively.

Table 2. Variable Encoding and Descriptions

Variable Levels (Original Labels) Integer Encoding
Sex F (Female), M (Male) 1,2

ASY (Asymptomatic), ATA (Atypical
ChestPainType Angina), NAP (Non-Anginal Pain), |1, 2,3, 4

TA (Typical Angina)
L e o
ExerciseAngina N (No), Y (Yes) 1,2
ST Slope Down, Flat, Up 1,2,3

Note. The integer encodings for each variable facilitate
the application of machine learning techniques, allowing
for the conversion of qualitative data into a numerical for-
mat that can be easily analyzed.

Table 3 presents a sample of the cardiovascular disease
dataset after preprocessing steps, including the removal of
missing values and outliers. Table 3 illustrates the distri-
bution of key variables among the included records.

Table 3. Sample Data from the Cardiovascular Disease Dataset

Variable Value

D 1 2 3 4 5 6
Age 46 50 37 46 54 39
Sex 2 1 2 1 2 2
ChestPainType 2 3 2 1 3 3
RestingBP 140 160 130 138 150 120
Cholesterol 289 283 214 195 339
FastingBS 0 0 0 0 0
RestingECG 2 3 2 2 2
MaxHR 172 156 98 108 122 170
ExerciseAngina 1 1 1 2 1 1
Oldpeak 0.0 0.0 0.0 1.5 0.0 0.0
ST_Slope 1 2 3 2 1 3
HeartDisease 0 0 0 1 1 0

Note. The sample data shown in Table 4 is representative
of the overall dataset, demonstrating the range and vari-
ability of the variables included in the analysis.

5. Preliminary Data Analysis and Visu-
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al Presentation

5.1 Distribution Visualization

The age distribution of heart disease cases was visualized
using a dual-color scheme to distinguish between affected
and unaffected groups, as shown in Fig. 1.
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Fig. 1 Age distribution histogram by heart
disease condition (Photo/Picture credit:
Original).

The majority of samples fell within the 40-70 age range,
with disease prevalence showing a progressive increase
with age, particularly between 50-60 years. Histograms
revealed a positive correlation between age and disease

incidence, suggesting elevated risk in older populations.
Evaluation of chest pain types (ASY, ATA, NAP, TA)
showed ASY presenting the highest disease association
(>75%), followed by TA and NAP, while ATA showed the
lowest (<20%), as clearly demonstrated in Fig. 2.

Chest Pain Type and Heart Disease Prevalence

1.00

0.75

Heart Disease Condition

Proportion
o
3

0.25

ATA NAP
Chest Pain Type

0.00

Fig. 2 Chest pain type and heart disease
relationship (Photo/Picture credit: Original).
Violin plots (Fig. 3) illustrated cholesterol level distribu-
tions, indicating potentially elevated values in affected
groups. Maximum heart rate analysis revealed depressed
values among cardiac patients, possibly reflecting im-
paired cardiac function.
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Fig. 3 Max heart rate distribution by heart
disease condition (Photo/Picture credit:
Original).

The analysis of maximum heart rate revealed distinct dis-
tribution patterns between groups, as visualized in Fig. 4.
While affected individuals (represented by dark points)
appeared clustered in both lower (100-150 bpm) and
higher (150-200 bpm) ranges, unaffected subjects (light
points) demonstrated a more uniform distribution across

the spectrum.
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Fig. 4 Cholesterol distribution by heart
disease condition (Photo/Picture credit:
Original).

5.2 Correlation Analysis

The correlation analysis employed Spearman‘s rank cor-
relation coefficients (ranging from -1 to 1) to quantify
monotonic relationships between variables. Age showed
a positive correlation with heart disease (0.294), while
RestingBP demonstrated a weak positive association
(0.111). In contrast, Cholesterol exhibited a slight nega-
tive correlation (-0.141). FastingBS displayed a moderate
positive correlation (0.268), whereas Maximum heart rate
(MaxHR) revealed a strong negative correlation (-0.410).
Notably, Oldpeak showed the strongest positive correla-
tion among all variables examined (0.425).



These relationships were further visualized in Fig. 5,
which employs a red-blue gradient heatmap (red: pos-
itive; blue: negative) to illustrate correlation strengths.
Diagonal elements appeared deep red representing perfect
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autocorrelation. Age, fasting glucose and Oldpeak showed
positive disease associations, while MaxHR demonstrated
negative correlation. RestingBP and cholesterol displayed
minimal correlation strength.
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Fig. 5 Spearman correlation heatmap (Photo/Picture credit: Original).

6. Methodology

To evaluate the predictive capacity of various clinical fac-
tors for heart disease, it developed two primary classifica-
tion models: logistic regression and random forest. The lo-
gistic regression model was selected for its interpretability
and feature selection capabilities, while the random forest
approach was employed to capture complex nonlinear
relationships and assess feature importance. Below, it de-
tails the model specifications and performance evaluation
outcomes.

7. Model Construction and Optimiza-
tion

7.1 Logistic Regression: A Foundational Tool
for Feature Selection

Given its interpretability and capacity for significance

analysis, logistic regression served as the primary predic-
tive modeling approach. The dataset was partitioned into
training and testing sets at an 8:2 ratio. During training, it
implemented Lasso (L1) regularization to enable feature
selection and model simplification. With over 900 initial
variables, Lasso regression effectively compressed irrele-
vant or redundant features by shrinking their coefficients
to zero, thereby enhancing the model‘s generalizability
and stability.

The evaluation results demonstrated 88.98% test-set accu-
racy (95% CI: 83.36%-93.08%). The model significantly
outperformed random classification (No Information Rate:
56.11%, p<2e-16), with a Kappa coefficient of 0.7744
indicating strong label-prediction agreement. McNemar*s
test (p=1) confirmed the absence of statistically significant
classification bias. These performance metrics are detailed
in Table 4.

Table 4. Key performance metrics of logistic regression model

Matric Value
Sensitivity 87.34%
Specificity 90.10%
PPV/NPV 87.34%/90.10%
Balanced Accuracy 88.72%

While demonstrating robust performance suitable for clin-
ical screening, the 38.33% detection rate suggests room
for improvement.

7.2 Random Forest: Capturing Nonlinear Rela-
tionships

To better model complex nonlinear patterns, it developed
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a random forest classifier (500 trees) for cardiovascular
risk prediction. All variables except the outcome were
included as features, with post-training importance anal-

ysis revealing each predictor‘s relative contribution, as
detailed in Table 5.

Table 5. Key Performance Metrics of Random Forest Model

Matric Value

Accuracy 88.89% (consistent CI)
Kappa 0.7725

Sensitivity 83.54%

PPV/NPV 90.41%/87.75%

McNemar’s test (p=0.2636) indicated non-significant
error differences versus logistic regression. While show-
ing comparable overall performance, the random forest

demonstrated particular strengths in handling high-dimen-
sional data and complex variable interactions, as illustrat-
ed in Fig. 6.
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Fig. 6 Random Forest feature importance (Photo/Picture credit: Original).

7.3 Ensemble Strategy and Refinement

Both models demonstrated comparable accuracy, with
logistic regression offering superior interpretability for
initial screening, while random forest provided enhanced
positive predictive value (PPV) for case verification. The
optimization framework incorporated several key im-
provements. For logistic regression refinement, it added
interaction terms to better address linearity assumptions
and fine-tuned the Lasso regularization strength to opti-
mize feature selection. In random forest tuning, it adjusted

class weights to handle imbalanced data and optimized
both the maximum features per tree and minimum leaf
samples to improve generalization. Additionally, it imple-
mented model stacking by combining prediction probabil-
ities from both models as meta-features, which were then
used to train a meta-learner for final classification. This
comprehensive approach enhanced the overall predictive
performance while leveraging the strengths of each mod-
el.

For clinical implementation, it recommends a two-stage



approach: high-sensitivity logistic regression screening
followed by random forest confirmation of high-risk cases
to reduce false positives. This hybrid strategy balances in-
terpretability with predictive power while addressing each
model’s limitations.

8. Results

The logistic regression model, with its optimal A param-
eter selected through cross-validation, identified several
significant predictors through non-zero coefficients. Key
variables included age, cholesterol levels, maximum heart
rate (MaxHR), Oldpeak measurement, along with import-
ant interaction terms such as age of the patient with serum
cholesterol and the slope of the peak exercise ST segment
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with maximum heart rate, all demonstrating substantial
predictive value for cardiac risk assessment.

For the random forest model, after implementing class
weights to address sample imbalance, variable importance
analysis revealed ,,Oldpeak®, ,,ST Slope*, ,,MaxHR*, and
,»ChestPainType as the most influential features contrib-
uting to model decisions.

The ensemble approach, which combined predictions
from both logistic regression and random forest models as
meta-features, achieved superior performance compared
to individual models (as shown in Table 6). This enhanced
performance indicates complementary learning capabili-
ties - where logistic regression effectively captures linear
relationships while random forest excels at identifying
complex nonlinear patterns in the data distribution.

Table 6. Key Performance Metrics of Random Forest Model

Model Accuracy Kappa Sensitivity Specificity
Logistic Regression 87.78% 0.7512 84.81% 90.10%
Random Forest 89.44% 0.7842 84.81% 93.07%
Stacking Model 90.00% 0.7958 86.08% 93.07%

This comparative analysis demonstrates how different
modeling approaches can provide unique insights into
cardiovascular risk prediction, with the ensemble meth-
od leveraging the strengths of both constituent models
for optimal performance. The consistency of certain key
variables (Oldpeak, MaxHR) appearing as important
predictors across different methodologies reinforces their
clinical relevance in cardiac risk assessment.

9. Discussion

The comparative analysis of the three models reveals key
insights into cardiovascular disease (CVD) risk prediction.
The logistic regression model demonstrates robust perfor-
mance, confirming that even after variable selection and
interaction term enhancement, linear models retain strong
predictive capability. The random forest model, however,
achieves superior specificity by leveraging nonlinear re-
lationships and automated feature selection, while the en-
semble model combines the strengths of both approaches,
attaining the highest overall accuracy (90.00%). Notably,
all models consistently identify Oldpeak, ST Slope, and
MaxHR as the most influential predictors, reinforcing
their clinical significance in CVD risk assessment. The in-
clusion of interaction terms (age of the patient with serum
cholesterol and the slope of the peak exercise ST segment
with maximum heart rate) further enhanced logistic re-
gression performance, highlighting the importance of con-
sidering variable interdependencies.

Despite these strengths, several limitations must be ac-
knowledged. First, the models were trained on a single
public dataset (n=918), and while internally validated,
multicenter studies with larger cohorts are needed to en-
sure generalizability. Second, the cross-sectional nature of
the data restricts dynamic risk assessment, as longitudinal
tracking of disease progression was unavailable. Third,
while random forest and ensemble models offer higher
accuracy, their ,,black-box‘“ nature may hinder clinical
adoption compared to the interpretability of logistic re-
gression. Finally, the study did not incorporate cost-sen-
sitive learning, which could better account for the severe
consequences of false-negative diagnoses in clinical prac-
tice.

Future research should focus on external validation using
real-world electronic health records (EHR), integration of
temporal modeling (e.g., LSTM networks) for dynamic
risk prediction, and incorporation of personalized features
(e.g., genetic markers, lifestyle factors) to enhance indi-
vidualized assessments, as conceptually illustrated in Fig.
7. Additionally, ensemble diversification with algorithms
like XGBoost could further optimize predictive perfor-
mance while maintaining clinical interpretability. These
advancements will be critical in translating machine learn-
ing models into practical, reliable tools for early CVD
detection and precision intervention.
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Fig. 7 Clinical Decision (Photo/Picture credit:
Original).

10. Conclusion

This study developed predictive models for cardiovascu-
lar disease using Lasso-regularized logistic regression,
random forest, and an ensemble approach. All models
demonstrated strong predictive accuracy, with the ensem-
ble model achieving optimal performance (90% accura-
cy). Key clinical variables, including Oldpeak, maximum
heart rate, and ST segment slope, were consistently identi-
fied as significant predictors, warranting particular clinical
attention.

The findings highlight two critical insights: that ensemble
modeling strategies can effectively enhance predictive

performance and that incorporating interaction terms and
rigorous feature engineering substantially improves tra-
ditional model efficacy. Future research directions should
focus on expanding sample sizes and incorporating tem-
poral/longitudinal data to develop more robust personal-
ized prediction models.
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