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Abstract:

Fault detection in microelectronics constitutes an
indispensable component of microelectronic applications,
routinely employed to ensure the normal operation of
electronic components. However, due to the inherent
characteristics of microelectronic devices, such as their
miniature size and high precision, conventional detection
methods often struggle to meet the stringent requirements
for their inspection. Machine Learning (ML) recently
has gained prominence as a result of the development of
Artificial Intelligence (Al) technologies, and it offers new
methods for microelectronics. Convolutional structures
are specifically used in Convolutional Neural Networks
(CNNgs), a type of deep neural network that helps mitigate
model overfitting problems and lowers the memory
footprint of deep networks. Recurrent Neural Networks
(RNNs) are an important class of artificial neural networks
that are specifically made to process sequential data.
They can handle any length of sequence. Transformers
are characterized by the introduction of the self-attention
mechanism, enabling exceptional performance when
dealing with sequential data. The application of models
trained on these various architectures in the context of
microelectronics inspection is the main focus of this
paper, with an emphasis on how they affect fault detection
accuracy. Furthermore, the concluding section of this
paper discusses the current challenges associated with
employing machine learning for microelectronics fault
detection and explores potential future solutions. The
process of addressing these challenges will not only drive
the advancement of ML itself but is also expected to lead
to more efficient and diverse methodologies for fault
detection in microelectronics.
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1. Introduction

Microelectronics, a subdiscipline of electronics, focuses
on designing, fabricating, and applying microscopic elec-
tronic components and circuits. These elements are typi-
cally fabricated on semiconductor materials. Its founda-
tional innovation lies in integrated circuits—miniaturized
interconnections of millions to billions of microscopic
transistors and other components on a single semiconduc-
tor substrate.

Positioned at the technological frontier, microelectronics
provides critical components for aerospace [1], defense,
and industrial applications. In biomedicine, S. Zhou et al.
integrated microneedle technology with microelectronics
to enhance drug delivery efficiency and physiological
substance extraction [2]. Similarly, plasma etching tech-
nology constitutes an indispensable semiconductor man-
ufacturing process for contemporary microelectronics,
confronting significant societal challenges including—but
not limited to—the transition toward three-dimensional
device architectures and atomic-scale precision in process
control [3].

Beyond manufacturing constraints, microelectronics faces
inherent security vulnerabilities as essential constituents
of communication devices (e.g., smartphones, comput-
ers) [4], alongside reliability concerns regarding storage
component longevity. These imperatives demand excep-
tional integration density, performance, and reliability in
electronic components. Consequently, microelectronics
testing has become paramount. Conventional methodolo-
gies often prove inadequate due to structural complexity
and extreme miniaturization. Recent advances in machine
learning, however, have catalyzed novel solutions for mi-
croelectronics inspection.

Machine learning is Artificial Intelligence (AI) technology
applied across various domains. For instance, in banking
and finance, machine learning is utilized for detecting
fraudulent transactions, providing risk assessments, and
enhancing the security of fund transfers [5]. Biomedicine
is another field where machine learning is extensively
applied. In recent years, scholars have proposed its use in
assisting pathologists to analyze blood samples, extracting
information during the data integration stage to facilitate
diagnostic reporting. Concurrently, the adoption of ma-
chine learning is driving the evolution of pathology to-
wards digital pathology. In industrial production, machine
learning plays a pivotal role by enhancing innovation, effi-
ciency, and sustainability. However, as manual controls in
the process are prone to issues, research into automating
machine learning has been conducted, aiming to optimize
the management of its workflows [6]. These applications
involve diverse models, each with distinct emphases

yielding different outcomes.

This article is divided into three sections, with the second
section elucidating the application of various models in
microelectronics fault detection, and the third section pre-
senting an outlook for future work.

2. Method

2.1 CNN-based Detection

Convolutional Neural Networks (CNNs), incorporate
convolutional computations that reduce the memory foot-
print of deep networks while maintaining a deep structure.
Through local receptive fields, weight sharing, and hierar-
chical feature extraction, CNNs effectively minimize the
number of network parameters and mitigate overfitting,
establishing themselves as the cornerstone architecture for
processing grid-like topology data (images/video/speech).
The Calabrese et al. employed an open-source Deep
Learning (DL) framework to address technical challeng-
es in the Quality Control (QC) process associated with
printed circuit board (PCB) manufacturing. Given that the
identified components and features may be at a sub-mil-
limeter scale with ill-defined boundaries, ensuring PCB
manufacturing quality while considering the feasibility
of implementing automated solutions for QC presents
a significant challenge. As a result, the proposed study
looked into the possibility of using a DL algorithm—
Mask R-CNN in particular—to create a tool that would
support the PCB fabrication QC process. Two DL algo-
rithms—Mask R-CNN implemented via Detectron2 and
YOLOv8—were the main focus of the study. A dataset of
open-source images was used to test the algorithms. With
curated subsets from the open-source database, the study
trained two different models (Mask R-CNN and YOLOVS)
that target two specific types of PCB defects: missing
holes and short circuits. Finally, the Mask R-CNN model
outperformed YOLOVS in terms of defect segmentation
and detection [7].

To precisely identify and categorize manufacturing flaws
on printed circuit boards (PCBs), Bhattacharya et al.
used a Fast Region-based Convolutional Neural Network
(FRCNN). They utilized the CNN backbone to extract
underlying geometric features from images. To achieve
a more comprehensive representation, Bhattacharya et
al. incorporated considerations for global dependencies
alongside local modeling, with their model operating di-
rectly on the feature maps generated by the convolutional
network. This approach leverages the complementary
strengths of CNNs and Transformers: modeling long-
range dependencies while combining shift-invariant local
representations to learn scale-invariant features. Thus,



the model was able to locate, identify, and categorize a
number of flaws in low-resolution bare-board PCB pic-
tures. Benefiting from the favorable properties of the
CNN architecture, Bhattacharya’s model is lightweight
and compatible with low-resolution inputs. Compared
to the standard YOLOv5m model, it achieved an overall
improvement of 3.2% in mAP at an IoU threshold of 0.5.
This advancement holds significant potential for enhanc-
ing production efficiency and substantially reducing costs

[8].
2.2 RNN-based Detection

Neural networks that are specifically made for processing
sequential data are called recurrent neural networks, or
RNNSs. They excel at capturing temporal information and
semantic information within such data. The shortcom-
ings of conventional feedforward neural networks, like
Multilayer Perceptrons (MLPs) and CNNs, in processing
data with dependencies spanning multiple time steps are
addressed by RNNs, an essential class of Artificial Neural
Networks (ANNSs) designed for sequence processing [9].
Liu et al. proposed a model based on a RNN as an alter-
native to Simulink models. This approach aims to achieve
accurate assessment of power semiconductor lifetime
in permanent magnet synchronous coupling converters
while meeting acceptable simulation time requirements
to satisfy whole-lifecycle design criteria. By utilizing the
RNN model, the team derived chip temperature estimates,
encompassing cumulative damage calculations for both
long-term and short-term thermal dynamics. The approxi-
mations obtained by this model proved significantly faster
and more accurate, achieving a error of only 0.51% for a
1-hour extreme mission profile [10].

This PI-LSTM, which is a variation of RNN models, was
trained with data from simulations using the Finite Ele-
ment Method (FEM), enhanced by adding flow rules to its
loss function. Despite having little training data, the phys-
ics-informed LSTM showed strong stability and high ac-
curacy.The equivalent plastic strain and stress components
within solder joints were predicted by the researchers
using PI-LSTM. By establishing a correlation with failure
cycles, these anticipated plastic strains make reliability
determination possible. Multiple reliability models con-
firmed that failure cycles predicted by PI-LSTM closely
aligned with FEM simulation results, highlighting its po-
tential for reliability assessment applications. Comparative
analyses revealed that PI-LSTM achieved comparable or
superior R? scores to alternative methods, despite utilizing
significantly smaller datasets. This approach substantially
reduces the time required to create training databases for
Al models. Moreover, PI-LSTM remains applicable in
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data-scarce scenarios where other models fail to achieve
sufficient accuracy [11].

2.3 Transformer-based Detection

The Transformer, a novel and simplified network archi-
tecture proposed by the Vaswani et al, relies entirely on
the attention mechanism, dispensing with recurrence and
convolutions. Experiments demonstrated that these mod-
els achieve superior quality, are significantly more paral-
lelizable, and require substantially less training time [12].
Thus, Transformers address three major limitations of
Recurrent Neural Networks (RNNs): failure in handling
long-range dependencies, lack of parallelizability, and the
information bottleneck.

To improve biomedical data analysis, Suresh et al. created
a novel methodology by combining the Transformer algo-
rithm with sensors based on nanoelectronics. Compared to
conventional approaches, the proposed method improved
diagnostic accuracy by 25% and reduced processing time
by 30%. Transformer model with smaller error margins
and greater prediction precision could produced lower
error values for the analysis of nano-circuitry data. In de-
tecting and diagnosing anomalies in nano-circuitry data,
its high accuracy and detection rates show its efficacy [13].
Consumer electronics often incorporate complex sensors
susceptible to malfunctions induced by temperature fluc-
tuations, humidity variations, vibration, and mechanical
shock. To ensure reliable sensor operation, Lin et al. de-
veloped a CESFDNet. After extracting local correlation
features from neighboring data points using multi-layer
convolutional processes, CESFDNet combines these fea-
tures with global dependencies that the Transformer archi-
tecture has detected. The researchers further refined the
self-attention mechanism to mitigate noise interference in
temporal sequences that compromise diagnostic accuracy.
Comprehensive experimental results conclusively demon-
strate the superiority and reliability of the Transform-
er-based CESFDNet framework [14].

3. Discussion

Despite increasing methods and advancing technologies in
microelectronics fault detection—where machine learning
has demonstrated significant practical value—challenges
persist. In counterfeit integrated circuit (IC) detection,
techniques like SIFT keypoint extraction, template match-
ing facilitate identification and analysis of PCB and IC
components. Hardware security still faces significant
challenges, despite the fact that deep learning and ANNs
have improved feature extraction efficiency, especially
through models like AlexNet, and Inception-v3, including
high-density PCBs’ inherent image clutter and the lack of
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extensive annotated datasets. Addressing these challenges
requires future exploration of multimodal imaging ap-
proaches, development of publicly accessible benchmark
datasets, and earlier integration of deep learning within
computer vision pipelines. For complete solutions, it is
still crucial to combine knowledge from computer vision,
imaging technology, hardware design, and machine learn-
ing [6].

In machine learning, while ML algorithms exhibit signifi-
cant predictive capabilities, they often fail to provide caus-
al explanations for their predictions. Determining which
particular factors, or combinations of them, influence
model decisions is nearly impossible due to the multilayer
architecture and inherent complexity of neural networks.
This opacity can be problematic—the ‘black-box’ nature
of such models precludes clear articulation of how various
factors are weighted during decision-making processes.
Moreover, in certain application scenarios, whether in su-
pervised or unsupervised settings, it is necessary to fully
comprehend the capabilities or skills being learned. This
requirement significantly complicates the learning process
[15].

To address these challenges, future research should
explore distinct pathways. In order to reduce bias and
guarantee fairness, research could primarily concentrate
on creating more efficient algorithms and methods [16].
Investigating bias reduction strategies, like data prepro-
cessing approaches and algorithmic fairness techniques, is
necessary to achieve equitable results and avoid discrim-
ination. Understanding and reducing biases in supervised
learning algorithms requires the development of models
that are both transparent and understandable [17].

The performance and generalization capabilities of super-
vised learning may also be enhanced by transfer learning
techniques, particularly when obtaining labeled data is
costly or time-consuming. The creation of strong transfer
learning frameworks that can adapt to various data distri-
butions and transfer knowledge across domains efficiently
while reducing domain shift could be the main focus of
future research [18].

Additionally, creating scalable and reliable algorithms to
handle massive datasets is essential. Traditional supervised
learning algorithms might find it difficult to effectively
process and extract knowledge from enormous volumes of
data as big data becomes more and more available. Future
research should prioritize creating algorithms capable of
handling large-scale datasets effectively, such as distribut-
ed learning methodologies [19].

Lastly, there may be a lot of advantages to combining
Supervised Learning (SL) algorithms with other machine
learning techniques. Robust models that can handle a vari-
ety of tasks can be created by combining different learning

paradigms. Models may be pre-trained on unlabeled data
by unsupervised learning algorithms, for example, and
then labeled data will be refined using through supervised
learning [20].

4. Conclusion

Machine learning has been extensively applied in micro-
electronics fault detection. This work provides a system-
atic exposition of microelectronics and machine learning
concepts, summarizes key applications of machine learn-
ing in microelectronics, and offers detailed examination
of fault detection case studies. It specifically analyzes the
implementation of various models—including CNNss,
RNNs and Transformer—in fault detection scenarios. The
paper comprehensively addresses prevalent algorithms,
current challenges, and future research directions. While
encouraging further research to improve their efficacy, a
basic overview of machine learning applications in micro-
electronics is introduced in the article. It is anticipated that
this work will be helpful to scholars, practitioners, and
students in related fields.
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