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Abstract:

Intracranial hemorrhage (ICH) is a life-threatening
neurological emergency that requires rapid and accurate
diagnosis to improve patient outcomes. While CT
imaging is the clinical standard for ICH detection, manual
interpretation by radiologists is often time-consuming and
prone to variability. In recent years, artificial intelligence
(AI) has shown great potential in automating this
diagnostic process. This paper presents a comprehensive
review of Al-based methods for ICH detection, focusing
on three major algorithmic approaches: artificial neural
networks (ANNSs), convolutional neural networks (CNNs),
and vision transformers (ViTs). ANN models provide
early insights through manually designed features, while
3D CNNs significantly improve spatial understanding of
bleeding areas through end-to-end learning. ViT-based
models further advance the field by leveraging global
attention mechanisms to capture long-range dependencies
between CT slices. This paper highlights key innovations
across various categories, discusses the clinical relevance
of recent architectures, and identifies challenges currently
faced by Al detection, including lack of interpretability,
domain generalization capabilities, and patient data privacy
issues. Through a modular comparison of representative
studies, this research provides valuable insights into the
development and deployment of artificial intelligence
in neuroimaging tasks. By combining technological
advancements with practical considerations, this review
aims to provide resources for researchers and clinicians
and offer a timely and comprehensive perspective on the
ongoing development of Al in medical diagnostics.

Keywords: Intracranial hemorrhage; deep learning; arti-
ficial intelligence.
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1. Introduction

Intracranial Hemorrhage (ICH), commonly known as
cerebral hemorrhage, is an ICH caused by the rupture of
a blood vessel in the brain. This condition can be caused
by trauma, hypertension, aneurysm, or other vascular
anomalies. ICH is a neurological emergency that has a
significant impact on life and requires rapid diagnosis and
intervention by a physician. Accurate detection and classi-
fication of the type of intracerebral hemorrhage is critical
for determining the appropriate treatment.

Previously, detection and evaluation of ICH relied on
manual interpretation of Computed Tomography (CT)
scans by radiologists [1]. Although experienced physi-
cians can perform this process efficiently, it is time-con-
suming, prone to human error, and often costly, especially
in areas with limited medical specialist resources. In ad-
dition, differences in the skill levels of clinicians and di-
agnostic errors caused by long working hours may lead to
inconsistent assessment results, thereby delaying critical
treatment. In emergency situations where decisions must
be made quickly, these limitations may pose a significant
risk to patient treatment. In recent years, artificial intel-
ligence (AI) has become a powerful tool for supporting
clinical decision-making in medical imaging by providing
faster, more consistent, and lower-cost analysis results
[2]. Al-based assistance systems can improve diagnostic
efficiency and alleviate doctors’ work pressure by quickly
screening CT scans to identify potential bleeding, prior-
itizing urgent cases, and even assisting in distinguishing
bleeding types.

Al technologies, particularly deep learning and Convolu-
tional Neural Networks (CNNs) have already demonstrat-
ed impressive capabilities in image classification, object
detection, and segmentation in fields such as autonomous
driving, facial recognition, and natural language process-
ing. These same technologies are now beginning to revo-
lutionize the healthcare sector. For example, Rajpurkar et
al. developed the CheXNet model, a 121-layer CNN that
achieved the same level of accuracy as radiologists in de-
tecting pneumonia from chest X-rays [3]. Similarly, Goo-
gle’s DeepMind successfully applied artificial intelligence
to the segmentation of eye structures in optical coherence
tomography (OCT), achieving high precision [4].

Driven by these technologies, researchers are increasingly
applying Al models to brain CT scan analysis for ICH de-
tection and classification [5]. These efforts have focused
on automated systems for recognizing the presence, type,
and location of hemorrhages. Various models have been
proposed that utilize advanced deep learning techniques
such as 3D CNNs, attention mechanisms, and hybrid
architectures that combine imaging data with clinical

metadata [6]. For example, Alis et al. (2022) proposed a
joint CNN-RNN model with an attention mechanism that
captures spatial patterns across slices and preserves con-
textual information. The attention layer helps focus on key
regions, improving both diagnostic accuracy and interpret-
ability in clinical settings [7]. The 3D CNNs extend tradi-
tional 2D CNNs by processing volumetric data, allowing
the model to learn the spatial patterns of consecutive CT
slices rather than processing each slice in isolation. This
is because bleeding may span multiple slices and exhibit
complex spatial structures. Attention mechanisms draw on
natural language processing techniques to assign higher
weights to regions with abnormal density or morphology,
helping the model focus on the most relevant areas in the
scan and thereby improving the interpretability of the im-
age. Hybrid models combine image-based deep learning
with structured clinical inputs to achieve context-aware
predictions that better reflect a doctor’s diagnostic reason-
ing. The purpose of these models is not only to improve
diagnostic accuracy but also to assist in clinical triage,
helping to prioritize urgent cases in high-traffic environ-
ments and reduce treatment time, which is critical for pa-
tient survival and subsequent treatment.

This paper aims to provide a systematic review of recent
Al-based ICH analysis methods. It will offer a qualitative
summary of key methods, highlighting innovative model
designs and clinical applications. The paper discusses
methodological strengths and limitations and offers in-
sights into the ongoing challenges and potential future
directions for more reliable, transparent, and integrated Al
systems in neuroimaging.

2. Methods

2.1 Artificial Neural Networks (ANNSs)
2.1.1 Feature-based feedforward ANN

Artificial neural networks have been applied in the early
stages of automated intracranial hemorrhage (ICH) detec-
tion, primarily relying on handcrafted feature extraction.
For instance, Graziano et al. developed a multi-layer feed-
forward ANN that classified CT scans using statistical,
morphological, and pixel-level features extracted from
segmented images [8]. The system utilized a manually
designed feature set extracted from segmented CT imag-
es, including statistical, morphological, and pixel-based
descriptors. These features were fed into a multi-layer
feedforward ANN for classification. Their method was
evaluated on a dataset of 200 head CT scans. The simplic-
ity and interpretability of architecture make it suitable for
low-resource settings; however, the reliance on manually



engineered features limits its scalability and robustness
compared to modern deep learning approaches.

2.1.2 Histogram-based ANN with backpropagation

While Graziano et al. focused on using a structured set of
statistical and morphological features, subsequent studies
explored variations in preprocessing and network configu-
ration to improve classification performance. For example,
Hermawan et al. implemented an ANN model incorpo-
rating histogram-based feature extraction and backprop-
agation training strategies [9]. The workflow involved
preprocessing techniques such as grayscale normalization
and histogram equalization, followed by segmentation
and feature extraction using histogram-based and mor-
phological parameters. These features were input into a
feedforward backpropagation neural network trained on
a dataset of 100 images. However, similar to other early
ANN-based approaches, its performance is constrained by
the manual design of features and limited adaptability to
complex image patterns.

2.2 Convolutional Neural Networks (CNNs)

2.2.1 2D CNN with clinical integration

The limitations of ANN methods led to a paradigm shift
toward CNNs, which offer superior performance by learn-
ing features directly from raw CT images without manual
engineering. For instance, Chilamkurthy et al. developed
one of the earliest large-scale deep learning models for
intracranial hemorrhage detection using a 2D CNN ar-
chitecture [10]. Their model was trained on over 300,000
non-contrast head CT scans, using slice-level annotations
for five hemorrhage subtypes. The network included a
ResNet-50 backbone for feature extraction and a fully
connected classification head. Notably, the model also
incorporated a triage module to prioritize critical cases in
real-time, representing a significant step toward clinical
deployment. This work demonstrated the scalability and
clinical value of CNN-based ICH detection.

2.2.2 3D CNN for volumetric analysis

Arbabshirani et al. proposed a 3D CNN architecture to
automatically detect intracranial hemorrhage from vol-
umetric CT scans [11]. Unlike 2D slice-based models,
their approach processes entire CT volumes to capture
spatial continuity across slices. The model was trained on
10,159 annotated CT studies from multiple clinical sites,
achieving high performance across diverse scanner types
and acquisition protocols. Key contributions include the
use of 3D spatial context and end-to-end training, which
improved detection of subtle hemorrhages often missed
by 2D methods. This work established the clinical utility
of 3D CNNss in large-scale, real-world ICH screening.
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2.2.3 CNN-RNN hybrid with attention

Alis et al. introduced a hybrid deep learning model
combining convolutional and recurrent neural networks
(CNN-RNN) with an attention mechanism to detect ICH
in non-contrast head CT scans [12]. The model used In-
ceptionResNetV2 as the CNN backbone for slice-level
feature extraction and a bi-directional gated recurrent unit
(Bi-GRU) to capture inter-slice dependencies. An atten-
tion layer was integrated to enhance the model’s focus on
diagnostically relevant slices.

2.3 Vision Transformers (ViTs)

Despite the success of CNN-based models in capturing lo-
cal spatial features and achieving high diagnostic accura-
cy, their inherent limitation lies in the restricted receptive
field and difficulty in modeling long-range dependencies.
To address this, researchers have recently begun exploring
Vision Transformer (ViT) architectures, which leverage
self-attention mechanisms to capture global contextual
information across CT slices more effectively.

2.3.1 Scopeformer: CNN-VIiT hybrid model

Barhoumi and Rasool proposed a hybrid n-CNN-ViT
architecture named Scopeformer for intracranial hemor-
rhage classification [13]. Their method integrates multiple
pretrained Xception CNNs as feature extractors, each
initialized with different datasets including ImageNet
and GAN-augmented CT images. These CNN-generated
feature maps are concatenated and passed to a 12-layer
Vision Transformer, enabling global attention across en-
riched multi-scale representations. The model’s modular-
ity and feature fusion strategy can address ViT’s limita-
tions on small datasets and low-level detail representation.

2.3.2 DeepViT-ICH: lightweight transformer

Roy et al. introduced DeepViT-ICH, a vision transformer
model specifically designed for classifying intracranial
hemorrhage using non-contrast CT images [14]. The ar-
chitecture incorporates depth-wise attention to reduce the
computational complexity of standard ViT models while
maintaining high accuracy. CT slices are preprocessed
and embedded into patch tokens, which are then passed
through a series of transformer blocks with layer-wise
token aggregation. Its primary innovation lies in using a
lightweight transformer design.

2.3.3 TransMed: multimodal ViT framework

Huang et al. proposed TransMed, a transformer-based
framework for multi-modal medical image classification,
demonstrating its adaptability to tasks such as ICH detec-
tion [15]. The model combines modality-specific CNN
encoders with a vision transformer that fuses features
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across modalities through self-attention. Though original-
ly designed for combining CT and MRI, the architecture
effectively captures global dependencies in intra-modality
applications as well. Key innovations include hierarchical
tokenization and cross-attention for multi-source fusion.
The approach highlights the potential of ViTs to integrate
diverse clinical inputs, offering a scalable strategy for
complex diagnostic tasks involving hemorrhage subtypes.

3. Discussion

3.1 Challenges

Although artificial intelligence has demonstrated outstand-
ing performance in ICH detection, several key challenges
remain that limit its widespread application in clinical set-
tings. One key issue is the lack of interpretability in many
deep learning models. Most CNN- and Transformer-based
architectures operate like “black boxes,” unable to pro-
vide clear reasoning processes or visual explanations for
clinical interpretation when generating predictive results.
While tools like Grad-CAM or attention maps can offer
some degree of heatmap visualization, the regions relat-
ed to radiological features—such as hematoma borders,
surrounding edema, or tissue displacement—often remain
unclear. As Richardson et al. pointed out, both patients
and clinicians express significant concerns about the invis-
ibility of Al decision-making, especially when algorithms
contradict clinical intuition yet lack transparent explana-
tions [16]. This algorithmic gap erodes patient trust and
poses major obstacles to regulatory approval for high-risk
diagnostic applications.

Another issue is the limited generalizability of current
Al models across different populations and healthcare
settings. Many models are trained on data collected from
specific demographic groups or fixed national populations,
often limited to a single institution. These models often
perform poorly when deployed to external datasets, as
these datasets typically exhibit differences in data collec-
tion parameters, patient anatomical structures, and disease
prevalence rates. For example, differences in bone density
between ethnic groups or age-related changes in brain
atrophy can significantly affect CT image contrast and the
visibility of bleeding. When models are not tested on rep-
resentative populations, Al systems may become overly
adapted to specific environments, thereby reducing their
safety and effectiveness when performing Al detection on
patients in other countries.

The third issue concerns data privacy and the ethical im-
plications of using patient neuroimaging data in large-
scale model training. Deep learning models typically
require thousands of annotated CT scan images, which

necessitates the establishment of centralized data ware-
houses to aggregate sensitive patient data. However, tradi-
tional de-identification procedures often fail to adequately
safeguard data security, and patient-specific images may
still inadvertently disclose health information. Patients are
often unaware that their medical images are being used for
model training, and most Al developers lack mechanisms
for dynamic consent, data withdrawal, or localized priva-
cy controls. Additionally, the growing reliance on cloud-
based data inference and third-party computing platforms
has heightened concerns about data regulation and inter-
national information transmission. Integrating such priva-
cy protection tech-nologies is crucial for ensuring patient
autonomy, legal compliance, and long-term trust in Al
systems.

Finally, even with high diagnostic accuracy, Al models
must overcome practical barriers to clinical integration.
Many systems were not designed with real-world hospital
infrastructure in mind, resulting in limited interoperabil-
ity with Picture Archiving and Communication Systems
(PACS), triage workflows, and reporting protocols. Rich-
ardson et al. noted that the practicality of Al depends not
only on performance metrics but also on its ability to
enhance clinical decision-making in a transparent and col-
laborative manner, rather than relying solely on the judg-
ment of clinicians [16]. Current Al tools often lack user
interfaces that support interactive feedback or real-time
monitoring by clinicians. Additionally, the introduction of
Al must avoid introducing cognitive load, time burden, or
legal ambiguity into the diagnostic process.

3.2 Future Prospects

Looking ahead, there are several directions that hold
promises for addressing the current limitations of ICH de-
tection. To enhance the interpretability of Al, future mod-
els may integrate domain-specific knowledge and rule-
based expert systems to help align Al outputs with clinical
reasoning. Visualization tools like Grad-CAM could be
further refined to provide neuroscientists with clearer, an-
atomically accurate explanations, thereby improving cred-
ibility and usability. Similarly, to address the issue of lim-
ited generalization capabilities, current Al development
efforts should explore some advanced adaptive technolo-
gies such as domain adaptation and domain generalization
algorithms. These methods enable models to adapt to dif-
ferent imaging protocols and patient populations, ensuring
more robust performance across diverse clinical settings.
Finally, to protect patient privacy, maintaining data de-
centralization can reduce the risk of data breaches and en-
hance compliance with privacy regulations. To transition
artificial intelligence from research prototypes to routine



radiology care, future efforts must adopt a socio-technical
perspective, requiring the collaborative involvement of
physicians, ethicists, and patients at every stage of system
development, deployment, and evaluation. These strate-
gies collectively pave the way for safer, more reliable, and
clinically relevant medical artificial intelligence imaging
tools.

4. Conclusion

In summary, artificial intelligence shows great market
potential in the detection and classification of intracranial
hemorrhage using CT imaging technology. From early ar-
tificial neural networks to advanced CNNs and transform-
er-based architectures, Al models have achieved gradual
improvements in accuracy, efficiency, and clinical appli-
cability. However, this technology still faces several key
challenges, including limited interpretability, poor gen-
eralization across different populations, and unresolved
privacy issues. Addressing these challenges requires in-
terdisciplinary collaboration, with a focus on explainable
Al robust domain adaptation, and privacy-preserving
training techniques such as federated learning. Future Al
development should also prioritize clinical integration
and user-centered design to ensure that Al tools not only
perform well technically, but also enhance trust, transpar-
ency, and usability in actual medical settings. Through
continuous innovation and professional deployment, Al is
likely to become an indispensable and powerful assistant
in the fields of neuroimaging and emergency diagnosis in
the future.
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