rrr ISSN 2959-6157

Toward Real-Time and Efficient Edge
Intelligence: Advances and Challenges in

Lightweight Machine Learning

Xiang Gao

Communication Engineering, Xidian
University, Xi’an, China
24012100008 @stu.xidian.edu.cn

Abstract:

Deploying advanced Machine Learning (ML), particularly
Deep Neural Networks (DNNs), on resource-constrained
edge devices is crucial for realizing low-latency, privacy-
preserving, and reliable edge intelligence applications.
However, a significant gap exists between the high
computational, memory, and energy demands of state-
of-the-art models and the severe limitations inherent to
edge hardware. This review systematically analyzes the
field of lightweight ML for edge devices, aiming to bridge
this gap. Methods: Focusing on the inference phase, the
review critically examines three primary technical pillars:
(1) Model Compression techniques, including knowledge
distillation, network pruning (structured and unstructured),
and quantization; (2) Efficient Neural Architecture
Design of inherently compact models (e.g., MobileNet,
ShuffleNet, EfficientNet series); and (3) Hardware-aware
Optimization and Adaptation, encompassing operator
fusion, dedicated inference engines, and leveraging
heterogeneous systems. Results and Conclusion: The
analysis highlights key achievements in reducing model
size, complexity, and latency while maintaining accuracy.
However, fundamental challenges persist, including the
accuracy-efficiency tradeoff, hardware fragmentation, the
memory wall bottleneck, and privacy/security concerns
during deployment. Emerging solutions like neural-
symbolic learning, adaptive federated learning, hardware-
aware Neural Architecture Search (NAS), Processing-
in-Memory (PIM) accelerators, and cross-stack co-
design frameworks represent promising future directions.
Overcoming these challenges is strategically vital for
unlocking the full potential of ubiquitous, real-time edge
intelligence.

Keywords: Machine Learning; knowledge distillation;
Lightweight model.

Dean&Francis

ISSN 2959-6157

1. Introduction

In recent years, breakthroughs in Artificial Intelligence
(AI), machine Learning (ML), notably, is instigating pro-
found transformations within all sectors, driving an exten-
sive array of applications from mechanized decision pro-
cesses to cognitive perception systems. Parallel to this, the
explosive growth of the Internet of Things (IoT), coupled
with intensifying demands for intelligence in real-time, is
fueling the rise of edge computing as a defining paradigm.
The core objective of this paradigm lies in the strategic
deployment of data processing and analytics capabilities
from centralized cloud environments to the network’s
periphery, thereby situating them nearer to the loci of
data origination. Deploying powerful ML capabilities in
smartphones, sensors, cameras, wearable devices, indus-
trial controllers, and autonomous vehicles is an Advanced
Driving Assistance System (ADAS) computational seg-
mentation technology that achieves low-latency response,
enhances user privacy (data localization processing),
reduces network bandwidth pressure, improves system
reliability (offline operation capability), and unlocks new
real-time intelligent application scenarios (such as indus-
trial predictive maintenance, real-time health monitoring,
and autonomous driving perception) [1].

On the other hand, mainstream, high-performance ML/
DNN models usually have a large number of parameters
(millions to billions), extremely high computational com-
plexity (requiring powerful GPUs/TPUs), and huge mem-
ory/storage consumption [2]. This creates a huge gap with
the severe resource constraints that are prevalent in edge
devices, including limited computing power (CPU/GPU/
NPU performance), scarce memory (RAM), insufficient
storage space (Flash), and tight power budgets (battery
capacity/thermal limitations). This mismatch between re-
source constraints and model requirements has seriously
hindered the widespread adoption and in-depth applica-
tion of intelligence at the edge [3].

To address these core contradictions, Lightweight Ma-
chine Learning for Edge Devices has emerged and is
quickly becoming a dynamic and vital field of research
and practice. The pivotal objective inherent to this domain
resides in architecting, refining, and implementing ma-
chine learning models and systems capable of sustaining
efficient operation under the stringent resource limitations
characteristic of edge computing environments — encom-
passing rigorous constraints on execution velocity, power
consumption, and memory utilization — whilst concur-
rently preserving the paramount degree of predictive pre-
cision attainable. Achieving this goal is strategic to unlock
the full potential of edge intelligence, drive Al inclusion,
and build truly real-time, reliable, privacy-preserving in-

telligent systems. Achieving lightweight machine learning
on edge devices is a multi-dimensional and cross-level
challenge, and its key technical paths mainly include:
Model Compression: Streamlining pre-trained models,
including Knowledge Distillation like the implementation
of dynamic network surgery demands substantial compu-
tational commitment, manifesting as 700,000 iterations
of gradient-descent convergence, to effectuate a 17.7x
diminution in parameter cardinality while imposing no
statistically significant degradation in classification effi-
cacy relative to the uncompressed archetype [4], Network
Pruning [5], Quantization (reducing weight/activation
numerical precision), Low-rank/Tensor Decomposition,
and other techniques. It is designed to significantly reduce
model size, computational effort, and memory footprint.
Efficient Neural Architecture Design: Directly design
lightweight and hardware-friendly model architectures,
such as MobileNet series, EfficientNet series, ShuffleNet,
SqueezeNet, etc., and use deep separable convolutions,
channel shuffling and other operations to ensure high effi-
ciency at the source.

Hardware-aware Optimization &&& Adaptation: Closely
combine the characteristics of the target edge hardware
(such as specific CPU instruction set, GPU architecture,
dedicated neural processing unit NPU/APU/AI accelera-
tor, FPGA, etc.) for model optimization, operator accel-
eration. For example, Cuong Pham-Quoc and his team
used the MobileNet CNN model to implement a prototype
version on an FPGA-based MPSoC platform, which was
69.4x and 4.67x faster than the quad-core ARM Cor-
tex-AS53 processor and Intel Core i7 CPU, respectively
and inference engine customization (such as TensorFlow
Lite, whose fundamental design objective centers on low-
ering barriers to deploying and executing machine learn-
ing capabilities directly upon endpoint devices positioned
at the network periphery, thereby obviating the need for it-
erative upstream-downstream communication involving
device-generated data and cloud/core computing resourc-
es [6, 7], ONNX Runtime, TVM, MNN, etc.). Maximize
the use of hardware computing power and improve energy
efficiency.

This review paper aims to systematically sort out and
critically analyze the core technologies and latest progress
of lightweight machine learning for edge devices. This
review will focus on the key technologies for lightweight-
ing in the model inference phase (rather than training),
especially the latest methods, evaluation metrics, repre-
sentative work, and performance on real-world edge plat-
forms in the three pillars of model compression, efficient
architecture design, and hardware-aware optimization. By
integrating a wide range of research from academia and
industry, this paper aims to: 1) To provide researchers and

practitioners with a comprehensive technical panorama
and development context in the field; 2) In-depth analysis
of the advantages, limitations, application scenarios and
interrelationships of different technical routes; 3) Sum-
marize the main challenges and open issues at hand; 4)
Discuss future promising research directions and develop-
ment trends.

2. Method

2.1 Model Compression-Based Algorithms

Model compression techniques target pre-trained models,
aiming to significantly reduce their size, computational
complexity, and memory footprint while preserving as
much of their original accuracy as possible [4, 5]. These
techniques are typically applied post-training or integrated
into a fine-tuning stage.

2.1.1 Knowledge distillation

Knowledge Distillation (KD) facilitates the transfer of
knowledge from a large, complex, and highly accurate
“teacher” model to a smaller, simpler “student” model [8].
The core principle extends beyond merely replicating the
teacher’s final class predictions (hard targets). Instead, the
student learns from the teacher’s “softened” output proba-
bility distributions, which encaps richer information about
inter-class relationships and decision boundaries learned
by the more complex model [8].

Response-Based Distillation (Logits Matching): This
prevalent form minimizes the Kullback-Leibler (KL) di-
vergence between the student’s output logits (pre-softmax
activations) and the softened logits of the teacher [8].
Softening the teacher’s output is achieved using a tem-
perature parameter (T > 1) within the softmax function:

exp(z,/T)
PED =S el 1)

il exp(zj /T)
where z is the logit vector and i indexes classes. Increas-
ing T produces smoother, less confident probability distri-
butions, revealing the relative similarities between classes

(M

as perceived by the teacher. The distillation loss (L) is
then calculated as:

LKD:TZ'DKL(p(Zt’T)| |p(Zs’T)) (2)
Here, z, and z, represent the teacher and student logits,

respectively. The T? factor compensates for the scaling
effect on gradients introduced by the temperature parame-
ter during optimization [8]. The student>s overall training
objective combines this distillation loss with the standard

cross-entropy loss (L.) computed using the ground-truth

Dean&Francis

XTANG GAO

labels (hard targets):

Lo =@ *Lyp +(1-a) *Lg 3)
The hyperparameter a (typically between 0.5 and 0.9) bal-
ances the influence of the teacher’s knowledge (L,) and

the true labels (L) [8]. During inference, the student

model operates using the standard softmax function (T =
1), incurring no computational overhead from the distilla-
tion process.

Feature-Based Distillation: This approach guides the
student to mimic the teacher’s internal representations
beyond the final output layer [8]. This involves aligning
intermediate feature maps or attention mechanisms at spe-
cific, often corresponding, layers within the teacher and
student networks. Loss functions such as Mean Squared
Error (MSE) or Cosine Similarity are employed to mini-
mize the discrepancy between these intermediate activa-
tions [8]. Capturing this internal state often leads to su-
perior student performance, particularly when the student
architecture differs substantially from the teacher’s. Ex-
ample: The TinyBERT framework effectively compresses
large transformer-based language models (like BERT) for
edge deployment by utilizing multi-layer feature distil-
lation, enabling performance close to the teacher model
with only a fraction of the parameters [8].

2.1.2 Network pruning

Pruning aims to identify and remove redundant or less
critical parameters (individual weights) or structural units
(entire neurons, filters, or channels) from a neural network
[5, 9, 10]. The goal is to generate a sparser, smaller model
that retains functional accuracy, thereby reducing infer-
ence latency and memory requirements.

Unstructured Pruning: This method removes individual
weights based on specific criteria, most commonly the
smallest absolute magnitudes (L1 norm) [5]. While un-
structured pruning can achieve very high compression ra-
tios, it results in irregular, non-structured sparsity patterns
within weight matrices. Exploiting this sparsity for com-
putational gains on standard hardware (CPUs, GPUs) typ-
ically requires specialized sparse linear algebra libraries
and may not yield significant speedups without dedicated
hardware support for sparse computations [5].

Structured Pruning: This technique removes entire struc-
tural components, such as convolutional filters or chan-
nels, or neurons/heads in transformers [9, 10]. This results
in dense, smaller sub-networks that align naturally with
standard hardware architectures, enabling direct computa-
tional speedups without requiring specialized sparse oper-
ations.

Norm-Based Criteria: Filters or neurons are ranked based
on the L1 or L2 norm of their weights. Units possessing

Dean&Francis

ISSN 2959-6157

the smallest norms are deemed least important and pruned
first [9, 11]. Pruning can be applied layer-wise, removing
a fixed percentage or number of units per layer, or glob-
ally across all layers, removing the globally least import-
ant units regardless of layer [12]. An iterative process—
prune a small fraction of parameters (e.g., 5-20%), then
fine-tune the remaining network to recover accuracy—is
commonly employed to mitigate cumulative accuracy loss
[9, 10]. Examples: PFEC (Pruning Filters for Efficient
ConvNets) utilizes L1-norm for filter pruning [11]. SFP
(Soft Filter Pruning) employs L2-norm and dynamically
sets pruned filters to zero during training epochs, allowing
them the possibility to recover importance if needed, be-
fore permanent removal [12].

Explainable Al (XAI)-Based Criteria: Techniques like
Layer-wise Relevance Propagation (LRP) offer an alter-
native perspective by computing a relevance score (R)
for each structural unit, quantifying its contribution to
the model’s final prediction for a given input [9]. The
LRP algorithm propagates relevance backwards from the
output layer to the input layer under a conservation prin-
ciple: the total relevance remains constant across layers

(Z,.R,.(Z) = ZjRS.M)) [9]. A commonly used rule for rele-

vance propagation in pruning contexts is LRP-a.130:

0,,)
R,.(l) :Z (a,- Wij) R)

. Oy)7
7Y (0w)
Here, afl) denotes the activation of neuron i in lay-

er 1, w, is the weight connecting neuron i (layer 1) to neu-

ron j (layer I+1), and (-)+ indicates retaining only positive
contributions (mimicking ReLU-like behavior) [9]. For

structured pruning, relevance scores (R,) are typically

aggregated per filter or channel (e.g., Ry, =% R, for

all neurons k in the filter channel). Units exhibiting the
lowest aggregated relevance scores are prioritized for
removal. This method provides a pruning criterion intrin-
sically normalized via the conservation principle and is
often more robust to the modelys output confidence com-
pared to simple weight magnitude [9]. Example: Yeom et
al. demonstrated the effectiveness of LRP-based pruning,
particularly in transfer learning scenarios with limited data
availability where traditional magnitude-based pruning
may struggle [9].

2.1.3 Quantization

Quantization reduces the numerical precision used to
represent model parameters (weights) and activations
[4]. Typically, this involves converting from 32-bit float-

ing-point (FP32) to lower bit-width formats like 16-bit
floats (FP16), 8-bit integers (INTS), 4-bit integers (INT4),
or even binary values (1-bit). This drastic reduction in bit-
width directly translates to a significantly smaller memory
footprint and enables the use of faster, lower-power in-
teger arithmetic operations on most hardware platforms,
including specialized Al accelerators [4].

Post-Training Quantization (PTQ): This technique is
applied directly to a pre-trained FP32 model without re-
quiring retraining [4]. Representative calibration data (un-
labeled or labeled) is passed through the model to observe
the dynamic ranges of activations. Calibration methods
(e.g., Min-Max, Entropy-based) then determine optimal
scaling factors (quantization parameters) to map the ob-
served float ranges into the target integer range per layer
or per tensor. While PTQ is fast and requires no additional
training data beyond calibration, it can lead to noticeable
accuracy degradation, particularly for lower precision
targets (e.g., INT4 or binary) or models with non-linear
activation distributions [4].

Quantization-Aware Training (QAT): To mitigate the
accuracy loss of PTQ, especially at lower precisions,
QAT simulates quantization effects during the training or
fine-tuning process itself [4]. During the forward pass,
the model weights and activations pass through simulated
quantization nodes (“FakeQuant”) that mimic rounding
and clamping to the target integer precision. Crucially,
during the backward pass (backpropagation), the Straight-
Through Estimator (STE) approximates the gradient of
the quantization function as 1 (6Round(x)/0x =~ 1). This
allows gradients to flow through the quantization step as
if it were the identity function, enabling the optimization
process to update the underlying full-precision weights to
become more robust to the quantization noise [4]. Weight
updates are performed on the full-precision weights. QAT
generally yields models significantly more accurate than
PTQ at lower bit-widths but incurs the cost of additional
training/fine-tuning time and computational resources. Ex-
ample: Frameworks like TensorFlow Lite (TFLite) and
PyTorch provide built-in QAT APIs (e.g., tf.quantization.
quantize_and_dequantize v2, torch.quantization) enabling
efficient deployment of low-precision (e.g., INT8) models
on edge hardware [7].

2.1.4 Other compression techniques

Low-Rank Factorization / Tensor Decomposition: These
techniques decompose large weight matrices, particularly
in fully connected layers or convolutional kernels, into
products of smaller matrices (e.g., via Singular Value
Decomposition - SVD, Tucker decomposition, Canoni-
cal Polyadic decomposition) [4]. This reduces the total
number of parameters and the computational cost of the

associated operations (e.g., matrix multiplications, convo-
lutions).

Parameter Sharing: This method forces different parts of
the model (e.g., layers, residual blocks) to share identical
weights, significantly reducing the total parameter count
[4]. While conceptually simple, effective sharing strate-
gies require careful design to minimize negative impacts
on model capacity and accuracy.

2.2 Efficient Neural Architecture Design

Instead of compressing large pre-existing models, this
paradigm focuses on designing inherently efficient neural
network architectures from the outset. These architectures
prioritize operations with low computational complexity
(FLOPs) and parameter counts while striving to maintain
competitive accuracy levels for the target tasks [13].

2.2.1 MobileNet series

The MobileNet series revolutionized efficient Convolu-
tional Neural Network (CNN) design by popularizing the
concept of Depthwise Separable Convolution as a funda-
mental building block [13]. This operation decomposes a
standard convolution into two distinct steps:

Depthwise Convolution: Applies a single convolutional
filter independently to each input channel, performing

spatial filtering. Computational cost: H* W * C_ * K * K.
Pointwise Convolution (1x1 Convolution): Applies a stan-

dard 1x1 convolution to linearly combine the channels
produced by the depthwise step. Computational cost: H *

W * Cin * Caut'
W C

in

Compared to a standard convolution (H

* C,, * K*K), depthwise separable convo-
lution reduces computation and parameters by roughly a
factor of K2+ 1/ C_ . MobileNetV1 established this core

out *

block [13]. MobileNetV2 introduced the inverted residu-
al structure with linear bottlenecks: the block expands to
a higher-dimensional space via a 1x1 convolution (with
ReLU6), applies depthwise convolution, and then proj-
ects back to a lower-dimensional space with another 1x1
convolution (using a linear activation to avoid collapsing
information). This improves gradient flow and representa-
tion capacity. MobileNetV3 further optimized block con-
figurations and channel counts using Neural Architecture
Search (NAS) and incorporated computationally efficient
nonlinearities like the h-swish (x * ReLU6(x+3)/6) activa-
tion function.

2.2.2 ShuffleNet series

ShuffleNets specifically address the computational bot-
tleneck caused by frequent 1x1 convolutions in dense re-
sidual-like blocks, especially when combined with group
convolutions for further efficiency gains [13]. While group

Dean&Francis

XTANG GAO

convolutions (splitting input channels into G groups and
processing each independently) reduce computation by
approximately a factor of G, stacking multiple group con-
volution layers blocks information flow between groups,
hindering representational power.

Channel Shuffle Operation: The key innovation in Shuf-
fleNet enables efficient cross-group information exchange
without resorting to dense (non-grouped) convolutions
[13]. Given an output feature map with G * N channels
(G groups, N channels per group), the operation: 1) Re-
shapes the channel dimension into (G, N). 2) Transpos-
es this to (N, G). 3) Flattens the result back to a single
dimension (N * G channels).

This operation is differentiable and computationally
cheap. Crucially, it ensures that each group in the subse-
quent layer receives input composed of shuffled subgroups
originating from all groups in the previous layer, facilitat-
ing rich feature mixing [13].

ShuffieNet Unit: This unit builds upon a bottleneck struc-
ture similar to ResNet but incorporates group convolution
and channel shuffle [13]. It typically replaces the first 1x1
convolution in a bottleneck with a pointwise group con-
volution, followed immediately by a channel shuffle oper-
ation. The spatial convolution (e.g., 3x3) is replaced with
a depthwise convolution. A second pointwise group con-
volution then restores the desired output channel di-
mension. This combination (Grouped Pointwise Conv
-> Channel Shuffle -> Depthwise Conv -> Grouped
Pointwise Conv) dramatically reduces FLOPs compared
to standard or MobileNet-like blocks while effectively
maintaining feature representation and mixing capabilities
through the shuffle operation [13]. Example: ShuffleNet
units demonstrated significant inference speed advantages
on resource-constrained ARM CPUs prevalent in mobile
devices [13].

2.2.3 EfficientNet series

EfficientNet leverages Neural Architecture Search (NAS)
to systematically scale model dimensions in a balanced
manner [13]. The core insight is that the three primary
dimensions of a CNN—width (w, number of channels),
depth (d, number of layers), and resolution (r, input im-
age size)—are interdependent; optimally balancing them
yields significantly better accuracy/computation trade-offs
than arbitrarily scaling a single dimension.

Compound Scaling, as epitomized by the EfficientNet
paradigm, synthesizes a unified scaling coefficient ¢ that
orchestrates isometric transformation operators applied
concurrently to the model’s architectural hyperparameter
dimensions, thereby instituting a coordinated multi-axis

magnification regime [13]: depth: d = a*; width: w= °

Dean&Francis

ISSN 2959-6157

; resolution: r= »*.

The constants a, B, y are determined by performing a
small grid search on the baseline model (EfficientNet-B0)
to maximize accuracy under minimal resource constraints.
The compound scaling principle dictates that scaling up
any single dimension requires corresponding scaling of
the others for optimal efficiency [13]. For example, high-
er resolution input requires a deeper network with more
channels to effectively capture the finer-grained features.
Implementation: The baseline model EfficientNet-BO0 is
first designed using NAS targeting a specific FLOPs
budget. Subsequent models (EfficientNet-B1 to B7)
are derived by uniformly scaling the baseline dimen-
sions using increasing values of ¢, guided by the de-
termined o, 3, y values [13]. This methodical approach
consistently produced models that outperformed previous
state-of-the-art models in accuracy while being signifi-
cantly smaller and faster.

2.3 Hardware-Aware Optimization and Adap-
tation

This pillar focuses on optimizing the deployment and ex-
ecution of models, considering the specific characteristics
and constraints of the target edge hardware platform. The
goal is to maximize computational throughput and energy
efficiency during inference [6, 7, 14-17].

2.3.1 Hardware-specific kernel optimization

Leveraging Hardware ISA: Optimizing the implementa-
tion of fundamental operators (kernels) like convolution,
matrix multiplication (GEMM), and activation functions
to exploit unique hardware features is crucial [7, 16]. This
involves:

Utilizing SIMD (Single Instruction, Multiple Data) in-
structions on CPUs (e.g., ARM NEON, Intel AVX-512)
for parallel data processing.

Exploiting specialized hardware units like Tensor Cores
on NVIDIA GPUs for mixed-precision matrix math.
Targeting custom vector/matrix processing units integrat-
ed within NPUs/APUs.

Operator Fusion: Combining multiple consecutive opera-
tors into a single fused kernel significantly reduces over-
head [7, 16]. For example, fusing Convolution -> Batch
Normalization -> Activation Function into one kernel
eliminates intermediate result writes/reads to/from slow
main memory (DRAM), minimizes kernel launch latency,
and improves data locality within faster cache memory.
This fusion is highly effective in reducing latency and en-
ergy consumption, especially for sequences of pointwise
operations common in CNNs.

2.3.2 Inference engine compilation and optimization

Dedicated inference engines compile models defined in
high-level frameworks (TensorFlow, PyTorch, ONNX)
into highly optimized executables tailored for specific tar-
get hardware (CPU, GPU, NPU, etc.) [7].

Graph Optimization: Engines perform high-level optimi-
zations on the model’s computational graph before code
generation [7]:

Constant Folding: Statically computes the output of oper-
ations involving constant tensors at compile time.

Dead Node Elimination: Removes operations whose out-
puts are not used by any other node in the graph.
Common Subexpression Elimination: Identifies and elimi-
nates redundant calculations.

Operator Fusion: Automatically identifies sequences of
operators that can be fused into a single kernel (as de-
scribed in 3.1).

Hardware-Aware Scheduling: The engine schedules the
execution of optimized kernels efficiently across available
processor cores, manages memory allocation and deallo-
cation strategically to minimize fragmentation and data
movement, and handles data transfers between different
memory hierarchies efficiently [7].

Quantization Support: Inference engines provide critical
support for deploying models quantized via PTQ or QAT,
mapping quantized operations to efficient low-precision
hardware instructions where available (e.g., INT8 on
NPUs, specific CPUs) [7].

Examples: TensorFlow Lite (TFLite) [7] and its delegate
mechanism, ONNX Runtime (with execution providers
like TensorRT, OpenVINO), Apache TVM (featuring ad-
vanced optimizations like auto-tuning kernel implemen-
tations for specific hardware targets), NVIDIA TensorRT
(optimized for NVIDIA GPUs), Qualcomm SNPE (opti-
mized for Snapdragon platforms), MediaPipe (for building
cross-platform ML pipelines).

2.3.3 Heterogeneous computing systems

Modern edge systems often integrate multiple distinct pro-
cessing units (e.g., CPU + GPU/NPU + FPGA). Efficient-
ly partitioning computational tasks and scheduling them
across this heterogeneous landscape is critical for overall
system performance and energy efficiency [14, 15, 16].
Task Partitioning and Scheduling: An intelligent runtime
system assigns specific computational tasks to the proces-
sor best suited for them based on capability and efficiency
[14, 16]:

CPU: Handles control-intensive tasks, complex logic,
data preprocessing (e.g., image resizing, audio feature
extraction), high-level task scheduling, and orchestrating
the other accelerators. Its flexibility makes it suitable for
non-parallelizable or irregular tasks.

GPU/NPU: Primarily utilized for accelerating the core

computationally intensive DNN inference workloads—
matrix multiplications and convolutions—leveraging their
massive parallel processing capabilities [14, 16]. NPUs,
being Application-Specific Integrated Circuits (ASICs)
designed explicitly for AI workloads, typically offer su-
perior performance per watt (TOPS/Watt) compared to
general-purpose GPUs for these specific operations [16].
FPGA: Provides programmable hardware ideal for custom
acceleration [14, 16]. This includes implementing highly
optimized versions of specific DNN layers, deploying
custom DNN architectures not well-supported by stan-
dard NPUs, or accelerating non-DNN tasks often found
in edge pipelines (e.g., signal processing like FFT, image
filtering algorithms like bilateral filtering or Otsu thresh-
olding). FPGAs offer a balance of flexibility, performance,
and lower power consumption compared to GPUs for
fixed-function tasks. Example: Liu et al. proposed a het-
erogeneous CPU/FPGA/NPU system for unmanned aerial
vehicles (UAVs), demonstrating significant efficiency
gains by optimally assigning different computational tasks
(control, vision processing, sensor fusion) to each proces-
sor type [14].

Framework Support: Compilation frameworks like
Apache TVM are designed with heterogeneous execution
in mind, capable of generating optimized code targeting
multiple different backends (e.g., CPU, NPU, GPU) with-
in a single application, managed by an integrated runtime
scheduler [7].

2.3.4 Specialized accelerators

Beyond programmable processors (CPUs, FPGAs), dedi-
cated hardware accelerators offer peak efficiency for DNN
inference:

Neural Processing Units (NPUs / TPUs): These are ASICs
meticulously designed from the ground up for accelerating
DNN operations [16, 17]. They feature highly optimized
dataflows, large arrays of parallel processing elements
(PEs), and specialized memory hierarchies designed to
minimize data movement. Examples include the Google
Edge TPU, Apple Neural Engine, and Huawei Da Vin-
ci architecture. NPUs consistently achieve significantly
higher computational throughput per watt (TOPS/Watt)
than general-purpose CPUs or GPUs for standard DNN
workloads [16, 17].

Processing-In-Memory (PIM): This emerging paradigm
aims to overcome the dominant “memory wall” bottle-
neck—where energy consumed by moving data between
separate memory and processing units often exceeds the
energy spent on computation itself [16, 17]. PIM architec-
tures perform computations directly within the memory
array where the data resides. This is achieved using novel
non-volatile memory technologies like Resistive RAM

Dean&Francis

XTANG GAO

(ReRAM or RRAM) or Magnetoresistive RAM (MRAM),
which can inherently perform simple logic operations. Ex-
ample: The UNPU accelerator leverages ReRAM-based
PIM to achieve exceptional energy efficiency (TOPS/W)
for DNN inference [17].

3. Challenges in Lightweight Edge ML

3.1 Algorithm-Level Challenges

3.1.1 Accuracy-efficiency tradeoff dilemma

Model compression techniques reduce computational
overhead but often sacrifice accuracy. For example, Bi-
narized Neural Networks (BNNs) exhibit >8% accuracy
drop on ImageNet tasks—a phenomenon termed the “Ro-
bustness Deficiency Problem” in 2023 neural network
compression surveys. Edge devices require real-time ad-
aptation to environmental changes (e.g., lighting, noise),
yet lightweight models struggle with online retraining due
to limited capacity. Recent studies (MobiSys 2024) show
error rates in dynamic scenarios are 3.2x higher than in
static environments.

3.1.2 Dynamic environment adaptation gap

Edge devices require real-time adaptation to environmen-
tal changes (e.g., lighting, noise), yet lightweight models
struggle with online retraining due to limited capacity. Re-
cent studies (MobiSys 2024) show error rates in dynamic
scenarios are 3.2x higher than in static environments.

3.2 Hardware-System Challenges

3.2.1 Heterogeneous hardware fragmentation

Diverse edge hardware architectures (CPU/GPU/NPU)
hinder universal optimization. ARM’s 2024 whitepaper
notes: Energy consumption for the same model varies
up to 6.8% across chips, severely limiting deployment
scalability. Compressed models still face on-chip mem-
ory (SRAM) bandwidth constraints. [IEEE TCAD 2024
research reveals 60% of edge device energy is consumed
by data movement rather than computation—the “Memory
Wall” challenge.

3.2.2 Memory-wall bottleneck

Compressed models still face on-chip memory (SRAM)
bandwidth constraints. [EEE TCAD 2024 research reveals
60% of edge device energy is consumed by data move-
ment rather than computation—the “Memory Wall” chal-
lenge. Privacy solutions like federated learning avoid data
uploads but increase edge computation load. USENIX
Security 2023 tests show encrypted inference inflates Res-
Net-18 latency by 400%, contradicting lightweight goals.

Dean&Francis

ISSN 2959-6157

3.3 Application-Deployment Challenges

3.3.1 Data privacy-security paradox

Privacy solutions like federated learning avoid data
uploads but increase edge computation load. USENIX
Security 2023 tests show encrypted inference inflates Res-
Net-18 latency by 400%, contradicting lightweight goals.
Deployment across OS (RTOS/Linux) and frameworks
(TFLite/ONNX) lacks standardization. ACM EdgeSys
2024 reports deployment costs consume 47% of edge Al
project budgets.

3.3.2 Cross-platform deployment barrier

Deployment across OS (RTOS/Linux) and frameworks
(TFLite/ONNX) lacks standardization. ACM EdgeSys
2024 reports deployment costs consume 47% of edge Al
project budgets.

4. Future Prospects

Neural-Symbolic Hybrid Learning can be considered.
Symbolic-reasoning-enhanced lightweight models (e.g.,
Neuro-Symbolic Al) improve sample efficiency. MIT’s
AAAI 2024 work demonstrates: Symbol-augmented Mo-
bileNet outperforms pure neural networks by 12.7% accu-
racy using only 10% training data.

Hardware-Aware Neural Architecture Search (NAS):
Next-gen NAS will integrate chip-level constraints (e.g.,
cache size, power budgets). Google’s EdgeNAS (ISCA
2024) discovers vision models 3x faster than EfficientNet
under 2W power limits.

Federated Learning with Adaptive Compression: Dy-
namic gradient compression (e.g., sparsification + quan-
tization) addresses communication bottlenecks. ICLR
2024’s AdaGQ reduces medical edge device communica-
tion costs by 83% without accuracy loss.

In-Memory Computing for Energy Efficiency: In-memory
computing architectures (ReRAM/PCM) break the “Mem-
ory Wall.” Nature Electronics 2024 reports ReRAM arrays
achieve 58.3 TOPS/W for ResNet-50 inference—1,000%
more efficient than GPUs.

Cross-Stack Co-Design Frameworks: Unified algo-
rithm-hardware-compiler co-design standards are emerg-
ing. MLSys 2024’s EdgeCoDesign automates end-to-edge
deployment from PyTorch to RISC-V chips, cutting man-
ual tuning by 90%.

5. Conclusion

Lightweight machine learning is the core enabler of edge
intelligence. This study systematically examines critical
challenges: At the algorithmic level, balancing efficiency

with accuracy and enhancing dynamic adaptability; at
the hardware-system level, hardware fragmentation and
memory bottlenecks hinder deployment scalability; at the
application level, privacy protection and cross-platform
deployment remain fundamentally at odds. Recent surveys
identify these as fundamental barriers to scalable edge Al
Future breakthroughs will rely on interdisciplinary in-
novation: Neural-symbolic architectures will enhance
few-shot generalization; hardware-aware NAS will auto-
mate chip-optimal model generation; adaptive federated
learning will reconcile privacy-communication tradeoffs;
in-memory computing will shatter energy limits; and
cross-stack co-design frameworks will unify deployment
standards. With the proliferation of 5G-Advanced/6G
networks and Al chip miniaturization, lightweight edge
ML will progressively realize its vision of “Unlocking
Intelligence Under Constraints,” empowering trillions of
IoT devices to build real-time, secure, and accessible edge
intelligence ecosystems.

References

[1] Wang Q, Jin G, Li Q, Wang K, Yang Z, Wang H. Industrial
Edge Computing: Vision and Challenges. Information and
Control, 2021, 50(3): 257-274.

[2] Hussain H, Tamizharasan P S, Rahul C S. Design
possibilities and challenges of DNN models: a review on the
perspective of end devices. Artificial Intelligence Review, 2022,
55:5109-5167.

[3] Hadidi R, Cao J, Xie Y, Asgari B, Krishna T, Kim H.
Characterizing the Deployment of Deep Neural Networks on
Commercial Edge Devices. IEEE International Symposium on
Workload Characterization, 2019: 35-48.

[4] Choudhary T, Mishra V, Goswami A, et al. A comprehensive
survey on model compression and acceleration. Artificial
Intelligence Review, 2020, 53: 5113-5155.

[5] Reed R. Pruning algorithms—a survey. IEEE Transactions
on Neural Networks, 1993, 4(5): 740-747.

[6] Pham-Quoc C, Nguyen X Q, Thinh T N. Towards an FPGA-
targeted Hardware/Software Co-design Framework for CNN-
based Edge Computing. Mobile Networks and Applications,
2022, 27: 2024-2035.

[7] Li B. Software Framework for Embedded Neural Networks.
In: Embedded Artificial Intelligence. Springer, 2024.

[8] Gou J, Yu B, Maybank S J, et al. Knowledge Distillation: A
Survey. International Journal of Computer Vision, 2021, 129:
1789-1819.

[9] Yeom SK, Seegerer P, Lapuschkin S, Binder A, Wiedemann S,
Miiller KR, Samek W. Pruning by explaining: A novel criterion
for deep neural network pruning. Pattern Recognition. 2021 Jul
1;115:107899.

[10] He Y, Xiao L. Structured Pruning for Deep Convolutional

Neural Networks: A Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024, 46(5): 2900-2919.
[11] Anwar S, Hwang K, Sung W. Structured pruning of deep
convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC). 2017 Feb
9;13(3):1-8.

[12] He Y, Kang G, Dong X, Fu Y, Yang Y. Soft Filter Pruning
for Accelerating Deep Convolutional Neural Networks.
Proceedings of the 27th International Joint Conference on
Artificial Intelligence, 2018: 2234-2240.

[13] Zhang X, Zhou X, Lin M, Sun J. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE conference on computer vision and
pattern recognition 2018 (pp. 6848-6856).

[14] Liu X, Xu W, Wang Q, Zhang M. Energy-Efficient

Dean&Francis

XTANG GAO

Computing Acceleration of Unmanned Aerial Vehicles Based
on a CPU/FPGA/NPU Heterogeneous System. IEEE Internet of
Things Journal, 2024, 11(16): 27126-27138.

[15] Tan T, Cao G. Deep Learning Video Analytics Through
Edge Computing and Neural Processing Units on Mobile
Devices. IEEE Transactions on Mobile Computing, 2023, 22(3):
1433-1443.

[16] Shuvo M M H, Islam S K, Cheng J, Morshed B I. Efficient
Acceleration of Deep Learning Inference on Resource-
Constrained Edge Devices: A Review. Proceedings of the IEEE,
2023, 111(1): 42-91.

[17] Yang P, Wang H, Yang J, Qian Z, Zhang Y, Lin X. Deep
Learning Approaches for Similarity Computation: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 2024,
36(12): 7893-7912.

