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Abstract:

Brain-computer interfaces (BCIls) enable direct
communication with computers by encoding and decoding
brain electrical signals to generate control signals and
interact directly with external devices, thereby assisting
patients with damaged motor nerves. Research on brain
electrical signals based on motor imagery has always
received widespread attention. To effectively extract and
classify complicated brain electrical signal features, a
system architecture that can withstand a low ratio between
signal and noise, instability, and physiological artifacts
must be constructed. Advancements in motor imagery
electroencephalography have been made possible by the
rapid development of deep learning over the past few years.
This paper aims to introduce and analyze three decoding
models that use convolutional neural network architectures
(CNN) and three combinations of CNN and Transformer
architectures. Through similar comparisons and cross-
comparisons, by analyzing the accuracy of each model
on the current mainstream motor imagery-related datasets
BCI IV 2A and 2B, the advantages and disadvantages
of each model are explored. Through comparison, it can
be seen that models based on the CNN architecture still
occupy a dominant position due to their fewer parameters
and better adaptability to various situations. However, the
confusion decoding model CTNet performs very well on
the BCI IV 2A and 2B, indicating that the decoding model
with the Transformer architecture has higher performance
development potential and is the main direction of future
development.
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1. Introduction

With the continuous acceleration of the aging process,
the number of patients with neurological diseases such
as stroke and cerebral palsy is increasing. Among them,
70% of stroke patients have varying degrees of upper limb
dysfunction [1]. The number of patients with upper limb
dysfunction caused by other neurological diseases or con-
genital factors is also relatively high. To restore the upper
limb function of patients, rehabilitation training is indis-
pensable, and upper limb rehabilitation has become a hot
research field [2, 3]. Traditional therapies rely on profes-
sional therapists. With the growth of rehabilitation needs,
there is a significant shortage of professional rehabilitation
personnel. The gradual increase of disabled people and the
elderly population, and the problem of many patients and
few therapists, has become increasingly prominent. There-
fore, using rehabilitation robots to provide auxiliary train-
ing for patients, accelerating the rehabilitation process,
reducing medical burdens, and optimizing rehabilitation
efficacy is more urgent.

Motor Imagery (MI) is the act of imagining specific
movements in the brain without actually performing them
physically [4]. Electroencephalography (EEG) is a meth-
od that doesn’t require invasive procedures for recording
brain electrical activity, and can capture two-dimensional
data of brain electricity on the scalp surface [5]. The es-
tablishment of a communication and control channel be-
tween the human brain and computers or other electronic
devices is called BCI or Brain Computer Interface. EEG is
one of the main signal sources of BCI [6]. Motor Imagery
Electroencephalogram (MI-EEG) is a type of electroen-
cephalogram that does not require external stimulation and
can be self-regulated. It can be detected through electrode
channels and is a multi-dimensional long-term sequence
point. The low signal-to-noise ratio (SNR), instability, and
physiological artifact interference of MI-EEG affect its
decoding. Therefore, the current challenge for brain-com-
puter interface technology is to accurately recognize hu-
man intentions. Progress in MI-EEG has been promoted
by the rapid development of deep learning in recent years.
The purpose of this article is to study the research on de-
coding and control of the current mainstream neural net-
work algorithms.

2. Overview of Relevant Theories

2.1 Decoding Flowchart

Fig. 1 shows the flowchart for decoding the upper limb
robot using motion imagination. The decoding part main-
ly consists of three processing stages. The initial stage

of data collection involves recording neural data. Signal
processing is the second step, during which recorded
data is cleaned and preprocessed. The third stage in-
volves extracting features and classifying neural data,
which provides meaningful information and allows for
decision-making. The commonly used methods in this
step include support vector machines, Bayesian decision,
decision trees, random forests, neural networks, and deep
learning etc.

Signal Acquisition

l

Preprocessing

l

Feature extraction and
Classification

l

Instruction Conversion

l

Execution and Feedback

Fig. 1. Decoding Flowchart of the Upper
Limb Rehabilitation Robot (Photo/Picture
credit: Original).

2.2 Dataset and Paradigm

Currently, brain-computer interfaces are classified into two
types based on the characteristics of the electroencepha-
logram (EEG): event-related type and oscillatory type [7].
The ERP brain-computer interface is designed to identify
high-amplitude, low-frequency EEG responses to exter-



nal stimuli that have a time limit. ERP’s time course can
be efficiently modeled due to their high stability across
different individuals and clear waveforms [8]. Oscillato-
ry brain-computer interface external control is achieved
through the signal power of specific EEG frequency bands
that are usually asynchronous [9]. Event-related spectral
perturbation (ERSP) analysis can be used to represent the
oscillation signal that is time-limited to the external stim-
ulus [10]. Occasional brain-computer interface training is
more difficult, primarily due to its lower SNR and good
differences between individuals [11]. The motor imagery
EEG signal is the SMR potential, which is an oscillatory
potential. The data of this type used in the several models
introduced in this paper comes from the datasets named
BCI IV 2A and 2B.

3. Case Analysis

3.1 Application Cases of Convolutional Neural
Networks in Brain Electrocode Analysis

3.1.1 Shallow convNet and deep convNet

A CNN can be used to extract local features from images.
Such networks usually have a fixed hierarchical structure.
Convolutional layers, pooling layers, activation functions,
and fully connected layers are all part of a typical CNN.
Schirrmeister et al. designed two CNN models, Deep
ConvNet and Shallow ConvNet [12]. These two models
contain temporal convolutional layers and spatial convo-
lutional layers, and their main purpose is to decode and
classify the initial EEG signals on motor imagery. Deep
ConvNet features four convolution-max pooling modules,
with two dedicated for processing the input electroen-
cephalogram, three standard ones, and an integral softmax
classification layer. Shallow ConvNet’s first two layers
perform temporal convolution and spatial filtering. In
contrast to Deep ConvNet, Shallow ConvNet’s temporal
convolution has a more substantial convolution kernel.

3.1.2 EEGnet

Lawhern et al. designed the EEGnet model [13]. This
is a widely used compact convolutional neural network
structure. The network first performs frequency filtering
through temporal convolution, and then uses deep convo-
lution, which is connected with each feature map respec-
tively, to conduct spatial filtering at specific frequencies.
Separable convolution combines deep convolution and
pointwise convolution. Each feature map has its deep con-
volution that generates summaries on the time dimension,
while the pointwise convolution learns how to fuse these
feature maps optimally.
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3.2 Case of the Brain Electrocode Method Com-
bining CNN and Transformer

3.2.1 CTNet for EEG decoding

The Transformer model, with its global perception abil-
ity, performs exceptionally well in the fields of natural
language and image processing [14]. In recent years, it
has also been introduced into the EEG decoding field,
achieving certain results by leveraging time dependence.
However, this model neglects local feature learning (which
is crucial for EEG decoding), and requires additional reli-
ance on spatial filtering and other compensation methods
[15, 16]. At the same time, its working principle lacks de-
tailed analysis and visualization. Therefore, Transformer
is still in the exploration stage in the EEG field and cannot
yet be used as an end-to-end original EEG classification
backbone model. Using a convolutional module like
EEGNet, CTNet was proposed by Zhao et al to extract
local and spatial features from the EEG time series with
specific precision [17]. After that, it merges the encoder
module called Transformer and utilizes the Mechanism for
multi-headed attention to recognize the global dependen-
cies of advanced EEG features. Ultimately, it categorizes
EEG signals using a straightforward classifier module that
comprises fully interconnected layers.

3.2.2 Conformer for EEG decoding

Song and his associates proposed a convolutional trans-
former named EEG Conformer that can encapsulate
features that are local and global in a single system that
categorizes EEG [18]. The convolutional module, the
self-attention module, and the classifier are three compo-
nents that make up the overall framework. Local temporal
and spatial features are captured through time and spatial
convolution in the convolutional module, and time feature
parts are segmented using an average pooling layer. This
decreases the model’s complexity and eliminates unnec-
essary information. Next, the self-attention module learns
about global temporal dependencies through the self-at-
tention layer after recognizing every point in the time di-
mension as a token. To obtain the decoding result, a fully
connected layer is employed in the final stage.

3.2.3 RCA-Conformer for EEG decoding

Li et al. proposed RCA-Conformer, which combines
CNN and Transformer. It extracts local features through
multi-scale temporal convolution (MSTCN) and residual
channel attention (RCA), and enhances global features
by using the multi-head attention mechanism [19, 20]. A
convolutional unit, a transformer encoder module, and a
classification device are the three components of the mod-
el. The convolutional module combines MSTCN, spatial
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convolution, and RCA modules, respectively extracting
multi-scale temporal features, spatial features, and en-
hancing spatial information selectivity. The Transformer
encoder module receives the rearranged convolutional
feature maps. The Transformer encoder module captures
global context information through a multi-head attention
mechanism (MHA) and further processes the features
using the feed-forward network (Feed-Forward Network,
FFN).

4. Discussion

4.1 Discussion and Analysis of CNN’s Decoding
Model

The design differences between the two CNN models are
shown in Table 1:

Table 1. Design of Two CNN Models

Name ConvNet

EEGNet

Convolution type

Standard two-dimensional convolution

Depthwise separable convolution

. . Multi-layer stacked convolution
Feature extraction logic

(For example, Deep ConvNet has 5 layers)

Block design: Time filtering — Spatial filtering — Feature
fusion

Parameter quantity Higher

Extremely low

Furthermore, in terms of performance, compared with
EEGNet, Deep ConvNet is more dependent on a large
amount of data [11]. Moreover, Deep ConvNet requires
the adoption of training data augmentation strategies to
achieve good classification performance on the SMR data-
set. However, EEGNet performs well on all test datasets
and does not require data augmentation, which makes
this model more user-friendly in practical applications, so
there are more improved versions of EEGNet.

The performance of Shallow ConvNet on event-related
potential brain-computer interface datasets (ERP) is often
inferior to that on oscillatory brain-computer interface
datasets (SMR), while Deep ConvNet shows the opposite

situation. The performance of EEGNet in SMR classifi-
cation is comparable to that of Shallow ConvNet, and in
ERP classification, it is comparable to that of Deep Con-
vNet (and performs better in group-level MRCP, ERN,
and SMR classification), indicating that EEGNet is more
stable and can learn multiple features in various BCI
tasks.

4.2 Discussion and Analysis of the Decoding
Model Combined with CNN and Transformer

The design differences of the three types of combined ar-
chitecture models are shown in Table 2 as follows:

Table 2. Design of Models Combining Three Types of CNN and Transformer

Name CTNet Conformer RCA-Conformer

Type EEGNet+Transformer ConvNet+Transformer MSTCN+RCA+Transformer
Record set BCIIV 2A and 2B variety BCI IV 2A and 2B

P t -

t.tarame er quan Higher Higher Higher

1ty

Conformer’s design involves combining Shallow Con-
vNet with the self-attention mechanism. Local features are
captured by the self-attention mechanism while the con-
volutional module extracts global dependencies on them.
CTNet combines EEGNet and uses CNN to extract local
features and learns global features through the Transform-
er encoder. RCA-Conformer combines CNN and Trans-
former, introducing multi-scale temporal convolution and
residual channel attention (RCA) to extract local features.
In terms of performance, Conformer can be applied to
multiple types of datasets. CTNet and RCA-Conformer
are applied in the BCI IV 2A and 2B. Conformer has a

wide range of application scenarios, while CTNet and
RCA-Conformer have relatively limited application sce-
narios. In experiments targeting the BCI IV 2A and 2B,
the accuracy of CTNet in subject-specific evaluation and
cross-subject-specific evaluation is the highest among
the three. RCA-Conformer outperforms Conformer in
subject-specific evaluation, but Conformer has also been
tested in the SEED dataset, achieving an accuracy rate of
95.3%, demonstrating excellent performance.



4.3 Cross-Comparison Analysis

As can be seen from Table 3, in the experiments conduct-
ed on specific subjects in the BCI IV 2A and 2B, CTNet
achieved extremely high average accuracy rates. The same

Dean&Francis

ZHENKUN TIAN

type of Conformer and RCA-Conformer also demonstrat-
ed excellent performance. Compared with the CNN archi-
tecture, the architecture combining CNN and Transformer
was at the leading level in the experiments on specific
subjects.

Table 3. Subject-specifc classifcation accuracy (in percentage %)

Name BCIIV-2a BCIIV-2b
Shallow ConvNet 75.69 85.13
Deep ConvNet 77.78 85.21
EEGnet 77.39 87.71
Conformer 77.66 85.87
CTNet 82.52 88.49
RCA-Conformer 80.29 85.74

Table 4 indicates that CTNet had an average classification accuracy of 58.64% in the cross-subject experiments
of BCI IV-2a, which was just slightly less than Deep ConvNet. CTNet’s average classification accuracy on BCI
IV-2b was 76.27%. For the Conformer, which is also a combination of CNN and Transformer architecture, its

accuracy in cross-subject experiments was not as high as that of the CNN architecture model.

Table 4. Cross-subject classification accuracy (in percentage %)

Name BCIIV-2a BCIIV-2b
Shallow ConvNet 56.75 74.28
Deep ConvNet 60.15 75.18
EEGnet 56.85 75.13
Conformer 53.41 73.52
CTNet 58.64 76.27

5. Conclusion

This article reviews the three mainstream CNN archi-
tecture models and the three models combining CNN
and Transformer architectures in recent years. Through
comparative analysis, it can be seen that the CNN archi-
tecture models still hold the dominant position due to
their efficiency in extracting local features and their sim-
ple structure. The models incorporating the Transformer
architecture have their core advantage in that the self-at-
tention mechanism can dynamically capture the long-
range dependencies between electrodes and enhance the
global representation of complex brain electrical patterns.
However, these hybrid models still need to overcome two
major challenges: first, their performance highly depends
on the optimization of hyperparameters, and the number
of Transformer layers and channel dimensions need to
be precisely configured for different datasets; second, the
cross-subject generalization performance has not yet fully

led the way.

In conclusion, the decoding of brain electrical signals still
faces many challenges. On one hand, due to the special
nature of brain electrical signals, it brings two problems.
Firstly, even in the laboratory environment, brain electrical
signals are extremely prone to noise interference and have
a low SNR. Additionally, as biological signals, the data of
brain electrical signals often varies from person to person,
and the data distribution has significant differences. On
the other hand, unlike traditional image recognition and
speech recognition, the acquisition of brain electrical data
is more difficult, resulting in limited training data and the
need to achieve high-precision classification and recogni-
tion from limited data. Therefore, future brain-computer
interface decoding technologies need to break through
in three major directions: multimodal fusion, adaptive
architecture, and lightweight hardware, and also need to
promote large-scale applications in medical rehabilitation
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and education fields.
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