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Intelligent Optimization of PID Controller
Parameters Using Enhanced Parallel
Genetic Algorithm

Abstract:

Jiajun Gu Traditional Proportional-Integral-Derivative (PID)

parameter tuning often employs the Ziegler-Nichols
Institut Hohai-Lille, Hohai method, but it suffer‘s from limitatiqns such as reliance
Ui, Newjito, Jrmgm, on experience and t.rlal—and—error. With th'e developmept
210024, China of intelligent algorithms, although the Simple Genetic
Algorithm (SGA) can achieve automatic parameter
adjustment, it still faces issues like insufficient global
search capability and premature convergence. This paper
proposes an Enhanced Parallel Genetic Algorithm (EPGA),
which constructs a parallel evolutionary architecture
and a multi-dimensional performance index system.
By integrating dynamic tournament selection, adaptive
mutation, and periodic elite migration mechanisms, and
designing a diversity reward function, EPGA effectively
balances exploration and convergence capabilities.
Simulation experiments show that for a typical first-
order inertial system with time delay, the PID controller
optimized by EPGA can achieve no overshoot dynamic
response, fast stability, and precise steady-state control
performance. Compared with traditional genetic algorithms
and empirical tuning methods, this optimization strategy
significantly improves control quality indicators. The study
indicates that EPGA suppresses premature convergence
by constructing a parallel population topology network
and accelerates the propagation efficiency of excellent
parameters by combining dynamic gene selection
mechanisms, demonstrating excellent global search
capability and convergence characteristics in control
system parameter optimization. This method provides a
new solution for high-precision control requirements in
complex industrial scenarios, balancing dynamic response
quality and system robustness.
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1. Introduction

In the industrial automation control system, the stable and
reliable operation of the control system is fundamental
to ensuring production efficiency and product quality. As
the most widely used core control strategy in industrial
process control, the Proportional-Integral-Derivative (PID)
controller’s parameter tuning quality directly determines
the dynamic response characteristics and robustness of
the control system. Although the classic Ziegler-Nichols
(Z-N) method can quickly generate initial parameters, its
empirical tuning process, relying on critical gain measure-
ment, often leads to significant system overshoot and dif-
ficult elimination of steady-state errors, exposing inherent
limitations in precision control scenarios [1]. With the in-
crease in industrial system complexity and the upgrade of
control precision requirements, traditional trial-and-error
parameter tuning methods can no longer meet multi-ob-
jective optimization needs. How to break through the
constraints of experience dependence and local optimality
to achieve high-precision adaptive optimization of PID
parameters has become a key scientific issue in improving
the performance of industrial control systems [2].

In recent years, intelligent optimization technologies rep-
resented by genetic algorithms have provided new ideas
for PID parameter tuning. The Simple Genetic Algorithm
(SGA) realizes automatic parameter optimization by sim-
ulating biological evolution mechanisms [3]. However,
its single-population architecture is prone to falling into
local optimality, and the problem of limited global search
capability is particularly prominent in complex system
optimization. The Parallel Genetic Algorithm (PGA)
adopts a multi-subgroup collaborative evolution strategy,
and the migration mechanism enhances population di-
versity, providing possibilities for breaking through the
premature convergence bottleneck [4]. However, existing
PGA algorithms still have shortcomings such as single
information interaction mechanisms between subgroups,
lack of dynamic adaptability in elite migration strategies,
insufficient consideration of the multi-objective optimi-
zation characteristics of control systems in the design of
selection and mutation operators, and the lack of a diver-
sity maintenance mechanism for the PID parameter space.
These defects make it difficult to balance the algorithm’s
convergence speed and solution set quality, restricting its
application potential in real-time control systems. There-
fore, constructing an enhanced parallel genetic algorithm
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that integrates dynamic evolution strategies is of great the-
oretical value and engineering significance for achieving
global optimization of PID parameters.

This study proposes an Enhanced Parallel Genetic Algo-
rithm (EPGA), which uses an island model to construct
a parallel architecture and balances global exploration
and local development through periodic elite migration
and dynamic tournament selection. A hybrid crossover
mutation operator is designed, and the parameter search
capability is enhanced by combining uniform crossover
and adaptive three-mode mutation strategies. A weighted
evaluation system including overshoot, setting time, and
other parameters is established to guide the efficient tun-
ing of PID parameters.

2. Methods

2.1 Genetic Algorithm (GA) Algorithm Frame-
work Design

2.1.1 PID control principle

The PID controller is a classic feedback controller, and
its name comes from the three regulatory actions of Pro-
portional, Integral, and Derivative. The proportional term
generates a control amount in proportion to the current
error size, helping to accelerate the system response; the
integral term accumulates historical errors to eliminate
steady-state deviations; the derivative term generates a
control amount according to the error change rate, which
can suppress overshoot and improve system stability. The
typical PID control law can be expressed as:

u(t) = er(f)+Kire(T)dr+Kd de(1) W
0 dt

Where u(#) is the controller output control amount, K,
is the proportional coefficient, e(r) is the control error at
time, K, is the integral coefficient, K, is the derivative

detr)
di

coefficient, and is the rate of change of the error

with respect to time t.

The PID control has a simple structure and strong robust-
ness, and is widely used in industrial processes, robotics,
and other fields. By reasonably tuning the three param-
eters, the system can be balanced to achieve a balance
between its rapidity, stability, and steady-state accuracy (as
shown in Fig. 1).
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Fig. 1. The structure of the PID controller [5].

2.1.2 Theoretical basis of genetic algorithm

The Genetic Algorithm (GA) was first proposed by J.
Holland and others in the 1970s. It is a global optimiza-
tion method that simulates the natural evolution process.
The algorithm maps the problem’s solution to a chromo-
some-type individual and searches for the optimal solution
through population evolution [6]. Its basic process is as
follows: first, initialize the population, randomly generate
an initial population of a certain scale, and each indi-
vidual is encoded to represent a candidate solution; then
carry out fitness evaluation, calculate the fitness of each
individual according to the preset objective function, and
measure the quality of the candidate solution. To solve the
multi-objective optimization problem in engineering, a
fitness function containing multiple variables is generally
constructed [7]; then set the selection operator, carry out
survival of the fittest on the population according to the
fitness, and select individuals with high fitness to enter the
next generation; then set the crossover operator, perform
gene recombination operations on the selected parent in-
dividuals to generate new individuals to mix the genetic
information of the parents; then set the mutation operator,
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perform random gene mutations on individuals with a
certain probability to introduce diversity and prevent the
population from falling into local optimality; finally, carry
out evolutionary iteration. After generating the offspring,
form a new generation of the population, and repeat the
above selection, crossover, and mutation processes until
the termination criterion is met to end the search.
Through simulating the survival of the fittest and gene
mutation mechanisms of biology, the genetic algorithm
realizes the global search capability for high-dimensional
solution spaces with few parameter assumptions. It has
been widely applied to control system parameter optimi-
zation, machine learning, engineering optimization, and
other fields, and is particularly common in PID parame-
ter tuning, which can automatically optimize controller
parameters to meet multi-objective performance require-
ments [8].

2.2 Enhanced Parallel Genetic Algorithm

To improve the search efficiency and global performance
of PID parameter optimization, this study proposes an En-
hanced Parallel Genetic Algorithm (its algorithm frame-
work is shown in Fig. 2).
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Fig. 2. The structure of the autoencoder (Photo/Picture credit: Original).
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2.2.1 Parallel evolutionary architecture

The entire population is divided into multiple subpopula-
tions (islands), and each subpopulation evolves in parallel
on independent computing units. The number and scale of
subpopulations are specified by parameters. Each subpop-
ulation performs selection, crossover, and mutation opera-
tions similar to traditional GA internally, and significantly
improves evolution efficiency through parallel computing.
Each subpopulation regularly exchanges excellent indi-

tournamentSize = basesize + K

Where basesize is the base tournament scale, max Size
is the maximum tournament scale, gen is the current
number of evolutionary generations, and max Gen is the
maximum number of evolutionary generations.

In addition, the diversity is quantified by calculating the
average value of the population parameter standard de-
viation, and the diversity reward value multiplied by the
coefficient is added to or subtracted from the individual
fitness to encourage the retention of individuals with high
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viduals according to the strategy after each generation
to achieve global information sharing and collaborative
search.

2.2.2 Dynamic tournament selection mechanism

This paper designs an enhanced tournament selection op-
erator. As the number of generations increases, the tourna-
ment scale dynamically increases to enhance the selection
pressure in the later stage.

1.5
J x (max Size — baseSize)]

diversity. In each round of selection, the individual with
the highest fitness in the current subpopulation is always
forced into the candidate pool to ensure that excellent
genes are not lost (as shown in Fig. 3). Finally, a tour-
nament is carried out based on the adjusted fitness, and
the winner is selected from the candidate pool to enter
the next generation. This mechanism effectively main-
tains population diversity while maintaining convergence
speed.

ournament

Fig. 3. Construction of Candidate Pool (Photo/Picture credit: Original).

2.2.3 Uniform crossover operator and its bit operation
logic

EPGA uses a binary uniform crossover operator to gener-
ate offspring, and each parameter undergoes gene cross-
over independently. For each pair of parents, a crossover
mask is randomly generated for the binary encoding bits
of each parameter, and the gene bits corresponding to
the position of 1 are exchanged between parents and off-
spring. In implementation, uniform crossover is performed
for each parameter separately: first, the parent parameter
values are binary encoded, then the encoding bits are ex-
changed using a random mask, and finally, the exchanged
binary sequence is decoded into a real number to obtain
a new individual. Compared with single-point crossover,
uniform crossover does not require a fixed split point and
can perform more fine-grained mixing of chromosomes,
thereby improving the diversity of offspring (as shown in
Fig. 4).
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Fig. 4. Uniform Crossover (Photo/Picture
credit: Original).

2.2.4 Adaptive multi-mode mutation strategy

EPGA sets an adaptive mutation probability for each indi-
vidual’s parameters and randomly switches between three
mutation modes. Specifically, the mutation probability
is dynamically adjusted according to the current number
of evolution generations and the parameter value range.
When actual mutation occurs, it is determined whether to
trigger the mutation with an adaptive probability, and then
a mode is randomly selected to execute. The parameter
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value can be encoded as a binary string and randomly flip
the encoding bits, which is the binary bit flip mode. In this
mode, there is a 30% probability of performing multiple
random flips (selecting 1 to 1/4 of the total number of bits
to flip), and in other cases, only one random position is
flipped; a new value can also be randomly generated in a
uniform distribution within the parameter allowable range,
that is, the uniform replacement mode. This mode allows
the algorithm to adaptively switch between global search
(large-scale perturbation) and local fine-tuning (small-
scale perturbation), helping to improve search flexibility
and global optimization capabilities; Gaussian noise with
a mean of 0 and a standard deviation proportional to the
parameter range can also be superimposed on the parame-
ter value, that is, the Gaussian perturbation mode.

2.2.5 Elite migration mechanism and diversity mainte-
nance

In the multi-subgroup parallel framework, a periodic elite
migration mechanism is introduced to enhance global
search. Migration is performed every few generations,
and each subpopulation selects the top 15% of individuals
with the highest fitness as elite immigrants. A fully con-
nected topology is adopted, each subpopulation transmits
elites to all other subpopulations, and each connection mi-
grates at most 2 individuals. At the receiving end, accord-
ing to the number of received immigrants, the individuals
with the worst fitness in the current subpopulation are
replaced with these elite immigrants, thereby realizing the
cross-group diffusion of excellent genes. After migration,
to prevent the decline of population diversity, about 5% of
new random individuals are injected into each subpopula-
tion to replace the remaining worst individuals (as shown
in Fig. 5). The elite migration and diversity maintenance
mechanism can effectively suppress the premature conver-
gence phenomenon while accelerating global convergence

[9].
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Fig. 5. Fully-Connected Topology (Photo/

Picture credit: Original).

2.3 Control Object Modeling and Simulation
Configuration

2.3.1 Mathematical model of the controlled system

The controlled object used in the simulation is a first-order

inertial system with time delay, and its transfer function
—2s

model is . This model has typical first-order inertia

S5s+1
and 2-second pure time delay characteristics, which is
representative of PID parameter tuning.

2.3.2 Simulation environment and evaluation system

This paper uses the MATLAB simulation platform to
construct a closed-loop system and evaluate control per-
formance. The specific approach is to use the pid function
and feedback function in the Control System Toolbox to
connect the candidate PID parameters with the controlled
object model to form a unit negative feedback closed-loop
system. A unit step input is applied to the closed-loop sys-
tem, and the system response curve is obtained through
the step function (simulation time is 0-30 seconds, step
size 0.01s).

In terms of performance evaluation, key time-domain
indicators of the closed-loop step response are extracted:
overshoot, settling time, rise time, etc.; at the same time,
error integral indicators are calculated: Integral Squared
Error (ISE), Integral Absolute Error (IAE), and Integral
Time Weighted Absolute Error (ITAE). The above indi-
cators are weighted and combined according to preset
weights to form a comprehensive performance evaluation
value (fitness). In the algorithm iteration, the search is car-
ried out with the principle that the smaller the comprehen-
sive index, the better, to ensure that the PID parameters
with good response speed and stability are obtained.

2.4 Experimental Design and Comparison
Scheme

To verify the performance advantages of EPGA, this study
designed a comparative experiment, comparing EPGA
with the standard SGA and the classic Ziegler—Nichols (Z—
N) empirical tuning method. The experimental settings are
that all genetic algorithms use the same parameter con-
figuration (total population size 400, number of subpopu-
lations 8, maximum number of iterations 100, migration
interval 5 generations, parameter binary encoding length
20 bits, PID parameter range (Kp € [0,10], Ki & [0,1],
Kd & [0,1]). The EPGA and SGA algorithms are inde-
pendently run multiple times to eliminate the influence
of randomness; each run records the change trend of the



global optimal fitness value during the iteration, the final-
ly obtained optimal PID parameters, and the optimization
time consumption. In the control scheme, the SGA runs
in a serial mode, and the Z—N method uses the MATLAB
built-in tuning tool for parameter setting.

The evaluation indicators include convergence speed (the
change curve of fitness with the number of generations),
total optimization time, and the performance indicators of
the final closed-loop system. A self-compiled comparison
function is used to simulate the PID parameters obtained
by the three methods, draw the response curve, and cal-
culate the response index. Finally, the improvement effect
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of EPGA relative to SGA and Z-N methods in control
performance and search efficiency is evaluated through
numerical comparison and graphic analysis.

3. Experimental Results

In the step response diagram (Fig. 6), the system opti-
mized by EPGA (blue solid line) has almost no overshoot,
can quickly track the target and stably converge; in con-
trast, the SGA (red dashed line) response has obvious
overshoot and stabilizes slowly, while the classic Z-N tun-
ing (green dotted line) has the largest overshoot.
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Fig. 6. Response Curves of EPGA/SGA/Z-N Methods (Photo/Picture credit: Original).

The convergence curve (Fig. 7) shows that the optimal fit-
ness value of EPGA decreases rapidly and tends to be sta-
ble within the first several dozen generations, and finally

reaches a level significantly lower than that of SGA, while
the total optimization time is also significantly reduced.
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(Photo/Picture credit: Original).

The performance index histogram (Fig. 8) shows the over-
shoot, setting time, rise time, and ISE/IAE/ITAE errors of
EPGA, SGA, and Z-N together. It can be seen that EPGA
is better than the control scheme in all indicators: its over-
shoot is only about 0.02%, significantly smaller than SGA
(about 7.6%) and Z-N (about 20.4%), the setting time and
rise time are also the shortest, and the ISE/IAE/ITAE val-

ues are significantly lower, indicating that the steady-state
accuracy and robustness are greatly improved (the specific
results are shown in Table 1). The comprehensive simu-
lation results show that the EPGA optimization strategy
effectively improves the dynamic response quality of the
control system and realizes the control performance of no
overshoot and fast stability.



Dean&Francis

ISSN 2959-6157

Step Response Comparison

3 R
= -
=
gL ——EPGA
- 0.5 - - -SGA
Z-N
Target
O - 1 | - L L |
0 10 15 Time(s) 20 25 30
Algorithm Convergence Performance Metric§ Qompan’son
120y \ Il Overshoot
,, oo} — FPGA o I SettlingTime
5 ——SGA = 10! RiseTime
= 80 = EISE
22 Time Consumption: Q EEIAE
7 60} EPGA: 148.31s E ETITAE
M SGA: 227.15s p=
40k : 5 5 |
0 20 40 60 80 100 EPGA SGA Z-N

Generation

Fig. 8. Comparison of Performance Bar Charts (Photo/Picture credit: Original).

Table 1 shows the performance parameter comparison of

EPGA/SGA/Z-N methods.

Table 1. Performance Parameter Comparison of EPGA/SGA/Z-N Methods

Performance Indicators EPGA SGA Z-N
Overshoot (%) 0.02 0.84 3.89
Setting Time t,(ss) 5.99 7.63 20.39
Rise Time ¢, () 1.84 3.94 2.42
ISE 2.38 2.89 3.77
IAE 2.88 3.79 425
ITAE 0 0 0

4. Discussion

The comprehensive experimental results analysis shows
that EPGA has significant advantages over the tradition-
al SGA and the empirical Z-N method. Its performance
improvement mainly comes from the enhancement of
global search capability by the multi-subpopulation par-
allel architecture and elite migration mechanism in the
algorithm, the maintenance of population diversity by the
dynamic tournament selection and adaptive multi-mode
mutation strategy, the improvement of gene combina-
tion richness by the uniform crossover operator, and the
guidance of the optimization direction by the objective
function integrating multi-dimensional performance indi-
cators. However, the algorithm still has limitations such
as high computational resource requirements (the parallel
architecture and fully connected migration have strict re-
quirements on hardware computing power), the dynamic

adjustment of hyperparameters relying on experience (such
as the mutation probability decay coefficient needs to be
manually set), and the adaptability to high-order nonlinear
systems to be verified. In the future, the engineering ap-
plicability and complex system optimization capabilities
of the algorithm can be further improved by introducing a
hierarchical migration topology to reduce communication
overhead, constructing a meta-learning-based hyperpa-
rameter automatic adjustment module, and incorporating
anti-interference performance and parameter robustness
into the multi-objective optimization framework [10, 11].

5. Conclusion

This paper proposes an Enhanced Parallel Genetic Al-
gorithm (EPGA) applied to PID parameter tuning and
verifies it through simulation experiments on a typical
first-order inertial system with time delay. The designed



EPGA combines multiple innovative mechanisms such
as dynamic tournament selection, adaptive multi-mode
mutation, uniform crossover, and periodic elite migration,
effectively improving the search capability and population
diversity of genetic algorithms. The experimental results
show that the PID controller optimized by EPGA has
dynamic response performance of no overshoot, fast sta-
bility, and excellent steady-state accuracy, and its perfor-
mance indicators (overshoot, settling time, integral error,
etc.) are significantly better than the traditional SGA opti-
mization scheme and the classic Ziegler-Nichols method.
The study proves that EPGA, through the combination of
parallel subgroup evolution and adaptive operators, effec-
tively avoids premature algorithm convergence and can
provide an efficient solution for parameter tuning of pre-
cision control systems that balances response quality and
robustness. Future work can further verify the applicabil-
ity of EPGA in higher-order and nonlinear systems and
explore the algorithm’s extended application in real-time
online tuning and multi-objective optimization problems.
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