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Research on the Recognition Method of
Exoskeleton Rehabilitation Robot Based on
Patient Intent Recognition

Abstract:

Lujin Lyu" . Yujie Ye’ With the development of exoskeleton rehabilitation robot
technology, the use of such robots can assist patients in
achieving basic motor functions such as normal walking,
improve the physical condition of patients, and gradually
restore the motor functions of the affected limbs. These
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bioelectrical signals and physical signals such as force/
torque. This paper reviews the recognition methods of such
robots and explores their intention recognition methods in
depth. Focusing on the intention recognition technology
of exoskeleton rehabilitation robots, this paper analyzes
the principles, processes, advantages and disadvantages,
and applicable scenarios of the Surface Electromyography
(sEMG) and Inertial Measurement Unit (IMU) methods,
providing theoretical references for optimized design
and clinical applications. By evaluating the rehabilitation
effects of each intention recognition method, this paper
explains and evaluates their recognition principles, offering
certain references for the optimized design and clinical
practice of rehabilitation robots.
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1. Introduction tary exoskeletons, such as BLEEX and Hardiman, to
] ) enhance soldiers’ physical abilities. Today, exoskel-
The exoskeleton robot was first invented by Russian  oton robots have been widely applied in the fields

engineer 'Nicola§ Yagen in‘ the 1890s, using com- o medical rehabilitation, industrial assistance, and
pressed air to drive and assist human movement. I tourism services. In the medical field, exoskeleton
the 1960s, the United States began to develop mili-  y6hot can reduce the workload of therapists and help



patients with muscle weakness or the elderly to regain the
ability to walk, go up and down stairs, etc. Lower limb re-
habilitation exoskeletons directly contact the limbs, detect
patients’ movement intentions in real time, and assist the
affected limbs in completing movements. Therefore, accu-
rate intention perception is crucial.

At present, rehabilitation robots mainly use assisted
movement therapy to assist paralyzed patients in reha-
bilitation training. Movement therapy can cause adaptive
changes in brain structure and function, and the nervous
system can continuously self-adjust and repair itself with
changes, thereby restoring patients’ limb movement func-
tions. Movement therapy mainly has two training modes:
passive training and active training. Junling Fu et al.
proposed that using robots to assist patients in active or
passive rehabilitation training can reduce the workload by
54.6% compared with traditional manual assisted rehabili-
tation, while the median error can be controlled within 0.25
N [1]. Passive training is mainly applicable to patients
with weak residual muscle strength and poor movement
ability, such as those with impaired movement ability
caused by symptoms like spinal cord injury. Exoskeleton
rehabilitation robots can drive the affected limbs to per-
form rehabilitation training, but the movement trajectory
is set by physicians and can only execute corresponding
movements according to the set action patterns, with poor
human-computer interaction. In the middle and late stages
of rehabilitation, when patients’ muscle strength has been
restored to a certain extent, rehabilitation robots can pro-
vide active rehabilitation training according to patients’
movement intentions [2]. Active training helps promote
functional recovery, improve limb coordination, and in-
crease patients’ enthusiasm for participating in training,
with more significant rehabilitation effects than passive
training [3]. However, compared with passive training, the
implementation of active rehabilitation training is more
difficult. Exoskeletons need to accurately and reliably rec-
ognize human movement intentions in the human-comput-
er interaction system and decide in time whether the robot
should provide movement or assistive force to patients,
thereby ensuring the stability of the human-computer in-
teraction control system.

This paper starts from the control mechanism between the
human body and exoskeleton robots, reviews the impact
of different intention recognition methods on obtaining
human movement intentions, and analyzes the existing
problems to provide certain references for the optimized
design and clinical practice of rehabilitation robots.

2. Control Mechanism of the Human
Body and Exoskeleton Robots

The lower limb power exoskeleton control system mainly
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consists of two parts: the perception system and the con-
trol system. The perception system can obtain the move-
ment intentions of the human lower limbs during move-
ment through human-computer interaction, analyze and
process them, and then drive the exoskeleton to complete
corresponding actions through the control system [4].
Bioelectrical signals can reflect human movement inten-
tions, and force/torque is an intuitive manifestation of
human movement intentions. At present, the perception
system of lower limb exoskeleton robots mainly obtains
and analyzes human joint movement information through
sensors and applies the movement patterns of various
human joints over time to the corresponding joints of
the exoskeleton structure. Since this control method is a
passive control, the lower limb exoskeleton robot system
can only execute corresponding actions according to the
known action patterns established based on human gait
data. This poor human-computer interaction makes it dif-
ficult to switch between multiple action patterns. Because
the main purpose of wearing lower limb exoskeleton
robots is to help patients with intelligent rehabilitation,
which requires high-frequency switching of action pat-
terns, the perception system must accurately recognize
human movement intentions to ensure smooth switching
between patterns and high-precision human-computer ac-
tion coordination, and enhance the interactivity between
the human-computer system and the adaptability under
different action patterns.

3. Surface Electromyography (sSEMG)
Technology

sEMG technology is a technique for identifying the inten-
tions of patients’ affected limbs by collecting and process-
ing muscle electrical activity signals. The main process
can be simply summarized into the following steps: infor-
mation collection, signal preprocessing, signal analysis
and application, and data storage and processing.

Electromyographic signals can be collected by placing
electrodes on the patient’s skin. These signals are very
weak. When the muscles are relaxed, they may produce
signals of 1-10pV; during low-intensity muscle con-
traction, the signals will increase to 10-100uV; as the
muscle contraction intensity increases, the signals can
reach 100pV-1mV, and in extreme cases, they may be
higher, but the maximum will not exceed SmV [5]. At the
same time, the frequency of electromyographic signals
is also relatively low, mainly concentrated in the range
of 10- 500Hz, with energy concentrated in the range of
30- 150Hz, and the energy distribution is relatively con-
centrated [6]. The frequency distribution of electromyo-
graphic signals can remain relatively stable. In addition,
the amplitude of surface electromyographic signals can be
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positive or negative, and the absolute value of the signal is
approximately proportional to muscle strength.

To identify weak surface electromyographic signals, sur-
face electromyographic signals can be amplified, filtered,
and normalized to eliminate noise and interference. Then,
through A/D conversion, the continuous analog signal is
converted into a discrete digital signal that can be ana-
lyzed. This signal can reflect the activity state of nerves
and muscles [7]. It is difficult to prevent the generation
of noise during the signal collection process, and noise
reduction of electrical signals is required. The degree of

noise reduction will greatly affect the subsequent iden-
tification and control. At present, the mainstream noise
reduction methods can be divided into hardware noise re-
duction and software noise reduction. Among them, soft-
ware noise reduction can be further divided into adaptive
filtering, wavelet transformation, and other methods for
noise reduction. The table below briefly shows the per-
formance and applicable scenarios of each method. The
comparison of different noise reduction methods is shown
in Table 1

Table 1. Comparison of advantages and disadvantages of various filtering methods

Computation|R e -|Anti-non-sta-

Multiple channels are

(ICA)

Method . ) . . . Applicable scene
complexity al-time | tionary noise required

Real-time control and power frequenc

Traditional filtering | Low 5/5 2/5 deny . .p v duency
interference suppression
Offli lysis, transient noi -

Wavelet transform | Centre 3/5 4/5 Deny ) 1he analysts, fransient noise remov
a

S ti

ouree separation Tall 2/5 3/5 Yes Multi-channel mixed signal separation

Deep learning Polar altitude 2/5 5/5

Depending on the sit- . . .
. Complex noise, big data scenarios
uation

Mixed method Polar altitude 2/5 5/5

Depending on the sit- | High precision requirements (e.g.,

uation medical diagnosis)

EMD/VMD Medium-high 2/5 4/5

Nonli ignal and low-fi
Deny onlinear signal and low-frequency

noise removal

After the surface skin electrical signals are processed,
feature extraction is performed, including the root mean
square (RMS) zero-crossing rate and waveform length.
Common time-frequency domain features include short-
time Fourier transform (STFT), wavelet transform, wave-
let packet transform, higher-order spectral analysis, and
Wigner-Ville distribution, among others [8].

After completing the data processing, model training is

required. Currently, the mainstream methods for model
training include deep learning models, transfer learning,
and fine-tuning [8]. In addition to traditional machine
learning, most widely used model training methods have
a common drawback: they are computationally intensive,
leading to longer training times. For a detailed compari-
son, see Table 2:

Table 2. Comparison of various model training methods

Method Advantage

Disadvantage

Learning ples, and highly interpretable

Traditional Machine|It is efficient in calculation, friendly to small sam- | It relies on feature engineering and has limited ability

to deal with complex patterns

Deep learni
cep learning high-dimensional complex data

Automatic feature extraction and processing of | It requires a large amount of data, consumes a lot of

computing resources, and is a black box

Transfer learning
needs

Solve data shortage and adapt to personalized | It relies on a pre-training model and is sensitive to

domain differences

Reinforcement learning

interaction

Dynamic strategy optimization and closed-loop | Training instability, low sample efficiency, and safety

challenges

Electromyographic (EMG) signals from patients are typi-

cally stored locally or in the cloud. For example, they can



be stored in the robot’s built-in storage devices, such as
SD cards or Flash drives, to preserve the original signals
or feature data. Cloud storage involves storing the data
on servers. Both methods aim to save processed data for
subsequent analysis and treatment [9]. However, due to
the varying muscle physiological structures and exercise
habits of different patients, their sSEMG signals can differ
significantly. Therefore, it is not advisable to use data
from other patients for treatment purposes, and each pa-
tient requires personalized adjustments, leading to a large
volume of data that needs to be compressed or segmented
[9].

sEMG offers significant advantages in the recognition of
rehabilitation robot intentions, including non-invasive,
safe, and real-time monitoring capabilities. Studies show
that SEMG can achieve an accuracy rate of 75%-88% for
lower limb gait recognition, while invasive electromyog-
raphy (iIEMQ) carries a 1.2%-3.5% risk of infection and
causes more pain. Furthermore, SEMG can simultaneously
monitor multiple muscles, reducing balance recovery time
by 23% in stroke rehabilitation. However, SEMG signals
are weak and susceptible to interference, with a signal-
to-noise ratio (SNR) 15-20dB lower than iEMG. They
require complex filtering processes, and accuracy drops
by 30%-40% across users, necessitating personalized
calibration. High-precision devices like DelsysTrigno are
expensive, but deep learning techniques such as CNN-
LSTM promise to enhance performance.

4. Inertial Measurement Unit (IMU)
Technology

IMU technology collects three-dimensional motion data
of objects by integrating sensors such as accelerometers
and gyroscopes, which then calculates the object’s motion
posture. In rehabilitation training, this technology collects
information on patients’ movement trajectories and joint
changes, and through computation, it enables robots to
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guide the patient’s affected limbs to perform actions like
abduction and rotation. The workflow of this technology
can be summarized into data acquisition, signal prepro-
cessing and calibration, extraction of motion features and
posture calculation, output application and feedback, and
data storage and processing.

IMU is a multi-sensor fusion system that primarily con-
sists of an accelerometer, a gyroscope, and a magnetom-
eter. The accelerometer measures the linear acceleration
in the X, Y, and Z axes, with a typical sampling frequency
ranging from 100 to 1000 Hz. The gyroscope, which pro-
vides high sampling rates of 200 to 2000 Hz, measures
rotational angular velocity. The magnetometer, which pro-
vides heading reference by sensing the Earth’s magnetic
field, has a sampling rate of 10 to 100 Hz [10]. In practical
applications, the IMU system typically uses a microcon-
troller (such as Arduino) or an embedded computer as the
data processing core, collecting and storing sensor data in
real-time through standard communication protocols like
12C (for example, the MPU6050). The IMU data collected
often contains noise and biases, which require preprocess-
ing. To minimize the impact of noise and biases on subse-
quent systems, the initial signals are typically filtered and
denoised.

After the motion state data of the object is preliminarily
processed, it is necessary to extract the motion character-
istics of the object, which mainly include acceleration,
angular velocity, displacement, attitude Angle, and so on.
At present, the main extraction methods are feature ex-
traction based on the time domain

Feature extraction methods, such as frequency domain
feature extraction and machine learning-driven feature ex-
traction, such as Cyberdyne’s HybridAssistiveLimb reha-
bilitation exoskeleton robot, which is based on the angular
velocity signal of IMU and uses the zero velocity update
(ZUPT) algorithm to correct the drift error [11]. Table 3
briefly describes the advantages and disadvantages of the
method:

Table 3. Compares the advantages and disadvantages of various feature extraction methods

Method Advantage

Disadvantage

features for real-time control

Time domain + frequency domain | The calculation is fast and suitable

Sensitive to noise and installation location

Jerk/PCA dimension reduction .
tion

Suitable for sudden motion recogni-

Weak motion recognition ability is weak

ZUPT+HMM . .
odic motion

Reduce drift and is suitable for peri- | The calculation is complex, and the adaptability to

non-periodic motion is poor

Threshold/key point detection Simple and efficient

Manual parameter adjustment is required, and the gener-
alization ability is weak

Like robots that use SEMG technology for intention rec-

ognition, rehabilitation robots that use IMU technology
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for intention recognition also need to be trained in models,
and the current methods are roughly the same.

The advantages of IMU technology in rehabilitation
medicine have been validated through numerous empir-
ical studies. In data collection, IMU sensors can achieve
sub-millimeter-level motion monitoring accuracy. Studies
show that the measurement error for hip and knee joint
angles is less than 1.5°, and the accuracy of gait cycle
recognition reaches 98.7%. The integration of multiple
sensors further reduces spatial displacement errors to
within 0.3cm. In data processing, the LSTM-based deep
learning model significantly improves the accuracy of
gait phase classification to 94.2%, a 23% improvement

over traditional methods. Combining this with Kalman
filtering can increase the signal-to-noise ratio by 18 dB.
In rehabilitation training, the real-time IMU feedback sys-
tem has improved patients’ gait symmetry by 37.5%. By
optimizing the control strategy with rehabilitation robots,
human-machine interaction latency is reduced to less than
50ms, significantly enhancing training efficiency. These
quantitative data fully demonstrate the precision, reliabil-
ity, and clinical value of IMU technology in rehabilitation
medicine.

5. Discussion and Analysis

Table 4. Brief comparison between SEMG technology and IMU technology

Characteristic

Surface electromyography (SEMG) technology

Inertial Measurement Unit (IMU) technology

Real-time reflection of motion intent

rience
Advantage . . .
Non-invasive, suitable for long-term use

sites at the same time

Enhance the human-computer interaction expe-

It can process muscle signals from multiple

High real-time, providing instant motion data feedback

The sensor is light and convenient for patients to move freely
The cost is low, which is conducive to clinical promotion
Strong anti-interference ability, can adapt to a complex envi-
ronment

ing and noise reduction

Disadvant
1sadvantage adjusted individually

quirements for hardware equipment

The signal is weak and requires complex filter-
Signals are individual-specific and need to be

The model has high complexity and certain re-

The intention is delayed, and only the limb movements that
have occurred can be detected, but the movements cannot be
predicted

It’s hard to discern subtle movements

The error increases with time

It does not reflect the neuromuscular state and has a limited
effect on nerve recovery

Applicable scene
low-speed control

Neurorehabilitation, prosthetic control, static or

Dynamic environment, group application, motor function reha-
bilitation

As can be seen from Table 4, sSEMG can predict the pa-
tient’s movement intention in advance by detecting mus-
cle electrical signals, which is suitable for high-precision
scenarios such as fine hand operation and nerve rehabili-
tation; IMU can adjust the trajectory through motion feed-
back, but only supports passive training, and has limited
effect on nerve rehabilitation.

The adaptive noise cancellation technology based on Wie-
ner filtering can effectively reduce the motion artifacts
in SEMG signals during autonomous movements, with
an attenuation range of 62%=+8% [12]. Additionally, by
integrating gyroscope angular velocity and accelerom-
eter data using a gradient descent algorithm, the system
achieves accurate attitude estimation. Under static test
conditions, the average Euler angle error is less than 1°
(RMSE=0.82°+0.15°), significantly reducing the phenom-
enon of integral drift [13].

6. Conclusion

This paper explores the technology of exoskeleton rehabil-
itation robots based on patient intent recognition, focusing
on the technical characteristics of two primary methods:
SEMG and IMU. The study reveals that sSEMG technol-
ogy can predict early motor intentions through muscle
electrical signals, offering advantages in neuromodulation
rehabilitation, but is susceptible to interference and ex-
hibits significant individual differences. In contrast, IMU
technology, which integrates multiple sensors, directly
captures the movement status of limbs, providing strong
real-time performance but with limited ability to predict
motor intentions. The paper concludes that sSEMG is better
suited for fine-grained rehabilitation scenarios, while IMU
is more suitable for mass application needs.

In the future, it is essential to advance multi-modal in-
formation fusion technology, integrating the predictive
capabilities of sSEMG with the feedback advantages of



IMU. It is also crucial to address key issues such as signal
synchronization and algorithm optimization. Research
findings indicate that, with advancements in artificial
intelligence and sensor technology, this technology has
the potential to enable more natural human-computer in-
teraction and precise rehabilitation treatments. This paper
recommends enhancing clinical validation and optimizing
personalized treatment plans to promote the widespread
application of this technology in medical rehabilitation.
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