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Abstract:
In this paper, we propose and validate a wearable 
device-based pool drowning early warning technology: 
a waterproof wristband based on Arduino intelligent 
development board is produced, and acceleration sensors 
and a wireless communication system are deployed on 
the wristband; the wristband sends the sensor data to 
the swimming pool early warning processing terminal; 
the terminal analyzes the acceleration data to complete 
the identification of the swimming posture, and makes 
an early warning of abnormal swimming posture and 
potential drowning behaviour, reminding the pool safety 
personnel to intervene. The above study shows that the 
drowning early warning program based on the waterproof 
bracelet and pool management terminal provides safety for 
swimmers and saves pool management costs, which has 
strong feasibility and great application potential.

Keywords: Swimming posture detection; Acceleration 
sensors; Wearable devices; Drowning warning.

1. Introduction
Drowning is a common unintentional injury, espe-
cially in the summer months or during seasons of 
high water activity. Swimmers need to closely watch 
their physical state during long hours of swimming 
or when physical exertion is high. Real-time mon-
itoring of fatigue level, respiratory condition, and 
physical status can help detect symptoms of dis-
comfort early and avoid drowning due to physical 
exhaustion, cramps, or other unexpected conditions. 
However, these essential precautions are often over-
looked when swimming daily. Most of the drowning 
detectors on the market are based on visual detection 
and intelligent analysis. However, these technologies 

have limitations when facing crowds of people in the 
pool, underwater waves, light refraction, mirror fog, 
etc., making it difficult to analyze accurately. This 
paper proposes a drowning detection method based 
on a waterproof wristband acceleration sensor for 
drowning monitoring in a swimming pool environ-
ment. All swimmers wear waterproof wristbands that 
can transmit data in real-time, analyze the status of 
swimmers, and alarm in time when abnormalities are 
detected, calling safety personnel for confirmation 
and rescue. The method can effectively solve the cur-
rent problems in drowning monitoring in swimming 
pools and optimize safety management.
Because of the small sample size and preexisting 
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participant variances that create and magnify mislead-
ing mixed effects, current research on the structural and 
functional study of anxiety disorders typically yields 
contentious or inconsequential results. We used large sam-
ples of over 11,000 participants from the ABCD Study to 
minimize variability. We also used a linear mixed model 
(LMM) for data analysis to address the mixed impact 
caused by natural variance within the sample and increase 
the relevance and dependability of our findings.
This paper proposes a drowning detection method based 
on a waterproof wristband acceleration sensor for mon-
itoring drowning in a swimming pool environment. All 
swimmers wear waterproof wristbands that can transmit 
data in real-time, analyze their status, and alarm when ab-
normalities are detected, calling safety personnel for con-
firmation and rescue. The method can effectively solve the 
current problems in drowning monitoring in swimming 
pools and optimize safety management.

2. Acceleration Sensor and Data Acqui-
sition Technology Research

2.1 Acceleration Sensor

2.1.1 Acceleration sensor-based drowning warning sys-
tem design

In this paper, a drowning warning system based on a wa-
terproof wristband acceleration sensor is designed. The 
main idea is shown in Figure 1. Currently, swimmers wear 
waterproof wristbands distributed by swimming pools. 
This paper integrates three-axis acceleration sensors in-
side the waterproof wristbands to collect the acceleration 
signals of the wrists in the x, y, and z directions. The 
sensor acquires the motion data of the swimmer’s wrist in 
real-time by sampling at a high frequency of 200 Hz and 
immediately transmits these signals to the data processor 
on the shore for preprocessing. The data processor first 
analyzes the three-axis acceleration signals in the time 
and frequency domains. Then, based on machine learning 
technology, it completes the classification of swimming 
posture recognition, warns about abnormal swimming 
posture, i.e., potential drowning behaviour, and calls the 
safety personnel to intervene.

Fig. 1 Detection idea of drowning detection based on a waterproof wristband acceleration 
sensor.

2.1.2 Significant learnable correlation between acceler-
ation signal characteristics acquired by triaxial accel-
eration sensors and drowning status

The hypothesis is validated if this study can capture and 
validate this correlation and effectively categorize the 
state using machine learning models. It has been shown 
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that the time-domain and frequency-domain features of 
acceleration signals can be used to recognize different 
movement states of the human body. Therefore, inputting 
these feature values into a machine-learning classifica-
tion model can effectively distinguish between normal 
swimming posture, drowning posture, and other human 
behaviours in swimming pools. Only existing research has 
not yet focused on the analysis and detection of drowning 
behaviour; this study will focus on the goal of abnormal 
swimming posture detection to complete the data collec-
tion and data analysis and realize the drowning warning 
based on acceleration signal features.

2.2 Acceleration data acquisition

2.2.1 Data Acquisition Device

The Arduino control board serves as the core control unit 
of the system and is responsible for connecting and oper-
ating various microprocessors, controllers, and computers. 
According to the hardware design documents provided 
by the official Arduino website, we adjusted the board 
and components to meet the actual design requirements. 
On the Mind+ software platform, the acceleration data is 
captured through module programming, transferred to the 
computer for processing, and displayed on a connected 
display. The Arduino control board is easy to connect to 
sensors and various electronic components, supports var-
ious interactive programs, and is powered by a USB port, 
eliminating the need for an additional external power sup-
ply.
From Newton’s second law, acceleration is determined by 
mass and force. Therefore, to measure the acceleration, 
connecting an object of constant mass to an elastic object, 
such as a spring that complies with Hooke’s law at both 
ends and a displacement sensor on the other side, is suffi-
cient. When a force is applied to the object, the spring ex-
pands and contracts, fed back to the displacement sensor, 
where the force on the spring is calculated from the ob-
ject’s displacement. Due to Newton’s third law, the force 
on the object is known, which, when divided by its fixed 
mass, gives the acceleration at this point. MEMS technol-

ogy can reduce this equivalent measurement principle to 
the device shown in Figure 2.
Therefore, acceleration can be measured in all three 
axes. In this project, the acceleration sensor used is the 
Gravity I2C LIS2DH three-axis acceleration sensor from 
DFRobot, as shown in Figure 3. The code allows the 
acceleration of the three axes to be output. A deflection 
was observed during the process of using the sensor, so it 
needed to be corrected by calculation. The Arduino code 
for 3-axis acceleration is as follows:
//Get the acceleration in the three directions of xyz
long ax, ay, az;
//The measurement range can be ±100g or ±200g set by 
the setRange() function
ax = acce.readAccX(); //Get the acceleration in the x di-
rection
ay = acce.readAccY(); //Get the acceleration in the y di-
rection
az = acce.readAccZ(); //Get the acceleration in the z-di-
rection
//Print acceleration
Serial.print(\”Acceleration x: \”);
Serial.print(ax);
Serial.print(\” mg/t y: \”);
Serial.print(ay);
Serial.print(\” mg/t z: \”);
Serial.print ln(az);
delay(300);
The measured x-axis, y-axis, and z-axis acceleration 
values need to be converted to a real-life human body 
coordinate system, where the x1 axis is forward along the 
coronal side of the body, the y1 axis is to the left, and the 
z1 axis is downward on the horizontal side. At this point, 
the direction of the z1 axis is consistent with the direction 
of the gravitational acceleration g. The direction of the 
new coordinate system will not change with the person’s 
movement. The measured values of the three axes are 
mapped to the new coordinate axes, and the sum of the 
squares of x1, y1, and z1 measured by the sensor at rest 
should be equal to the square of the acceleration of gravity 
g.
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Fig. 2 Schematic of uniaxial acceleration (left) Acceleration measurements in MEMS 
technology (right)

Fig. 3 Physical drawing of the triaxial sensor.
2.2.2 Data Acquisition Procedure

Therefore, the acceleration data collection for this exper-
iment includes data collected from the own device and 
the public database. The device data comes from the data 
collected in a hotel swimming pool in Shenzhen during 
the summer of 2024, and the public database uses the 
IMU dataset of swimming strokes provided on the Kaggle 
platform. The public dataset contains data from IMUB 

sensors, recording the readings of accelerometers, gyro-
scopes, and magnetometers while swimming, and we only 
select the reading changes of their accelerometers. The ex-
perimental data acquisition process and results are shown 
in Figure 4. The data recording time for each swimming 
stroke is a few seconds. The detailed dynamic character-
istics of various swimming postures can be obtained as 
control data under normal conditions.
After the data collection, the drowning and standard swim-
ming stroke data will be merged, disordered, and labeled 
as different swimming strokes. Subsequently, the data will 
be divided into a training set and a validation set, in which 
70% will be used to train the machine learning model, and 
30% will be used to validate the model’s performance. 
Through this approach, the accuracy and reliability of the 
drowning detection system can be effectively improved, 
and the algorithm’s performance in different states can be 
thoroughly evaluated. The final analysis results will pro-
vide the necessary data to support the optimization of the 
drowning detection algorithm.

Fig. 4 Acquisition process and results of triaxial acceleration data

4



Dean&Francis

Zhewei Hu

2.3 Preprocessing and feature extraction of ac-
celeration signals

2.3.1 Acceleration Signal Preprocessing

The quality of acceleration signals in everyday life is low-
er than that of precise wristband acceleration data used in 
lab settings because they are more vulnerable to interfer-
ence from shifting water currents, inappropriate wear, and 
other variables. Preprocessing these acceleration signals, 
therefore, aids in obtaining a higher-quality waveform 
view. This experiment employed four primary preprocess-
ing techniques: baseline deduction, filtering, and gravity 

removal. These methods aim to improve the precision 
and stability of the signals, enhancing the data analysis’s 
reliability. After the base data preprocessing, the acceler-
ation signal data already had fundamental integrity and 
dependability. We have successfully increased the data’s 
readability and clarity by eliminating the gravity com-
ponent, using Kalman filtering, and processing baseline 
deductions. By optimizing the signal quality and provid-
ing a strong basis for the feature extraction process, these 
preprocessing processes make it possible to perform more 
precise and efficient data analysis and model building.

Fig. 5 Comparison before and after gravity removal (the blue solid line is after gravity 
removal, and the red dashed line is original data)

Fig. 6 Comparison of waveforms before and after Kalman filtering (green solid line is after 
filtering, blue dashed line is before filtering)
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Fig. 7 Comparison of waveforms before and after baseline deduction (green dashed line is 
before deduction, yellow solid line is after deduction)

2.3.2 Extraction of the main motion axes

First, we subjected the acceleration signals to a prepro-
cessing step, including removal of the gravity component, 
Kalman filtering, and baseline deduction, followed by the 
x-, y-, and z-axis accelerations within each time window. 
These acceleration values are then plotted into a graph 

chronologically to show the changes in x, y, and z-axis 
acceleration within a single time window. By combining 
these data into a single plot for comparison, as shown in 
Figure 8, it was observed that there was no significant dif-
ference between the acceleration signals in different axial 
directions.

Fig. 8 Demonstration of three-axis acceleration in a time window after preprocessing
As seen in Figure 8, an accurate judgment cannot be drawn by only observing the triaxial acceleration of one 
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swim stroke in a single time window. We randomly select-
ed 10-time windows from a single stroke to more com-
prehensively analyze the acceleration characteristics of 
different swim strokes. For the uniaxial acceleration data 

within these time windows, we plotted them in the same 
graph to compare the consistency of the acceleration data 
within different time windows, as shown in Fig. 9:

Fig. 9 Consistency comparison of uniaxial acceleration data in ten randomly selected time 
windows

By looking at the images, it can be seen that the accel-
eration data for the same axis exhibits consistency for 
the most part over a single period. However, at certain 
moments, the data performance appeared more chaotic. 
Further analysis shows that this confusion mainly stems 

from the differences in the movement’s onset time and the 
stroke’s completion phase within different time windows. 
These differences in time windows led to variability in 
the acceleration data, which affected the coherence of the 
overall image.

Fig. 10 Composite of triaxial acceleration and combined acceleration data during a complete 
single swim stroke

In analyzing the three-axis acceleration and the combined acceleration data during a single motion cycle, Figure 
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11 shows the relationship between the x- and y-axis and 
combined acceleration. The figure shows that the x-ax-
is and y-axis accelerations are closer to the combined 
acceleration in the overall trend. At the same time, the 
z-axis has relatively less influence. However, in the actual 
image, the specific contribution of the x-axis and y-axis 
acceleration to the combined acceleration is still not easy 

to distinguish. Although the x-axis and y-axis acceleration 
data show some correlation with the combined accelera-
tion, it is difficult to identify which axial acceleration has 
a more significant effect on the combined acceleration in 
the graphs. Further analysis and processing are required 
to more clearly identify the specific contribution of each 
axial acceleration to the overall state of motion.

Fig. 11 Plot of triaxial acceleration versus combined acceleration for a single cycle of motion
To further investigate the weighting of the triaxial accel-
eration on the combined acceleration, we will mathemat-
ically quantify the difference between the acceleration of 
each axis and the combined acceleration to compare the 
weighting with the combined acceleration. It will be done 
by using the entire course of a single stroke and calculat-
ing the effect of each axis (x-, y-, and z-axis) on the com-
bined acceleration. We define this difference as follows:

	 Differencex i i i i i= + + −
N
1 ∑N

=1 ( x y z x2 2 2 ) 	 (1)

	 Difference y i i i i i= + + −
N
1 ∑N

=1 ( x y z y2 2 2 ) 	 (2)

	 Differencez i i i i i= + + −
N
1 ∑N

=1 ( x y z z2 2 2 ) 	 (3)

Where N is the sample size, “xi,” “yi,” and “zi” are the ac-
celeration data at the time point. The higher the difference, 
the lower the fit between the acceleration data of this axis 
and the combined acceleration, meaning that the overall 
influence of this axis on the combined acceleration is more 

negligible. Conversely, the lower the difference, the more 
significant the effect of the acceleration data of this axis 
on the combined acceleration, which is the main factor in 
judging the swimming posture. Thus, by analyzing these 
differences, we can more accurately identify the axes with 
the most significant influence on the motion state.
By plotting the mean values of the calculated differences 
in triaxial acceleration in different swim strokes into a sin-
gle graph, as shown in Figure 12, it is possible to observe 
the differences in the influence of each axis in different 
swim strokes. This graph demonstrates the relative con-
tribution of each axis to the combined acceleration and 
reveals the extent to which each axis contributes to the 
combined acceleration in different swim strokes. Despite 
the differences between the axes demonstrated in the fig-
ure, it may still be challenging to identify which axis has 
the most significant effect. Therefore, further analysis is 
required to determine the axes with the most significant 
impact on the combined acceleration and assess their im-
portance in the overall kinematic state.
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Fig. 12 Comparison of the difference values of triaxial acceleration and combined acceleration 
in different swimming strokes

To fully assess the overall effect of triaxial acceleration 
on combined acceleration, we calculated the mean value 
of the difference between triaxial acceleration and com-
bined acceleration for all the different swim strokes. This 
approach allowed us to identify which axial direction had 
the most significant effect on the combined acceleration 
across all stroke conditions. By aggregating these means, 
we can locate the axial direction with the most significant 

impact on the combined acceleration and further analyze 
its relative importance in the overall motion state. The 
table below shows the difference between the mean values 
of the acceleration of each axis and the combined accel-
eration for all swimming positions, and the results show 
that the difference between the y-axis acceleration and the 
combined acceleration is relatively tiny.

Table 1 Mean differences between triaxial acceleration and combined acceleration for all swim strokes

axis mean difference
x 276.13
y 249.24
z 341.73

Based on this finding, we hypothesize that y-axis acceler-
ation is essential in determining drowning. Higher weights 
can be assigned to the y-axis acceleration during machine 
learning to verify this viewpoint and observe whether it 
significantly improves the drowning detection perfor-
mance after assigning higher weights to the y-axis accel-
eration to optimize the detection effect of the model. In 
practical applications, the XYZ relationship may change. 
However, the above method can still extract the central 
motion axis with the most significant influence and does 
not affect the subsequent discussion.

2.3.3 Acceleration signal time domain feature ex-
traction

After determining the primary axis of motion, the time do-
main feature extraction of the signal can begin. Ordinary 
time domain features include mean, variance, standard 
deviation, correlation coefficient, first quartile, maximum 
and minimum values. In addition, features describing 
the details of the signal waveform, such as the root mean 
square, autoregressive coefficient, skewness, kurtosis, and 
over-zero rate, can also be computed. In this paper, the 
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following time-domain features will be used for analysis: 
mean, variance, skewness, kurtosis, correlation coeffi-
cient, and first quartile.
2.3.4 Acceleration signal frequency domain feature ex-
traction

Since acceleration signals can reveal their frequency com-
ponents and energy distribution in the frequency domain, 

performing frequency-domain feature extraction can 
help better understand the signal’s periodic and spectral 
properties. Frequency-domain feature extraction requires 
converting a Fourier transform of the signal to a frequen-
cy-domain representation. The following are the spectro-
grams generated for different swimming strokes after the 
Fourier transform.

Fig. 13 Spectrograms of Y-axis acceleration vs. combined acceleration for breaststroke, 
butterfly, and left-side backstroke.

Unlike time-domain feature extraction, frequency-do-
main feature extraction can provide information about the 
signal’s frequency distribution, frequency concentration, 
and spectral shape. This paper will use frequency-domain 
features such as primary frequency, the spectral center of 
mass, spectral bandwidth, spectral flatness, spectral roll-
off point, spectral entropy, and spectral energy.

3. Research on intelligent recognition 
technology of swimming posture

3.1 Machine Learning Models for Swimming 
Stance Classification
To fully explore the potential information in the data and 
achieve efficient classification tasks, this project analyzes 
four commonly used machine learning models: Support 
Vector Machine (SVM), K-Nearest Neighbor Algorithm 
(KNN), Decision Tree, and Random Forest. These models 
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are selected based on their effectiveness and wide applica-
tion in classification problems.
SVM (Support Vector Machine) is a robust supervised 
learning algorithm mainly used for classification and 
regression tasks. The basic idea is to classify data into 
different classes by finding an optimal hyperplane.SVM 
separates samples of other classes as much as possible by 
finding a hyperplane that maximizes the boundary dis-
tance (i.e., spacing) in a high-dimensional feature space. 
To improve the classification accuracy, SVM uses kernel 
functions (e.g., linear kernel, polynomial kernel, RBF ker-
nel, etc.) to map the original data to a higher dimensional 
space so that an appropriate decision boundary can be 
found even under more complex data distributions.SVM 
has a good generalization ability, which is especially suit-
able for the classification problem of small-sample data-
sets, and its performance is excellent in high-dimensional 
space.

Fig 14 Support vectors and intervals.

Fig. 15 K-nearest neighbor classifier.
KNN (K-Nearest Neighbors, K-Nearest Neighbors Algo-
rithm) is an instance-based learning method whose core 
idea is to classify samples by comparing their distances. 
Given a sample to be classified, KNN first calculates the 
distance between this sample and all the samples in the 
training set (usually using the Euclidean distance) and 
then selects the K samples closest to it as the reference 

point. Finally, based on the category information of these 
K samples, the category of the sample to be classified is 
determined by the principle of majority rule. The KNN 
algorithm is simple and easy to use, does not need to train 
the model explicitly, and has a high degree of interpret-
ability. However, KNN is less suitable for high-dimen-
sional data and has higher computational complexity, 
especially when the data volume is significant, so classifi-
cation performance may be significantly affected.
A decision tree is a tree-structured classification model 
whose basic idea is gradually splitting the data set into 
smaller subsets through a series of judgment rules. In 
constructing decision tree models, metrics such as infor-
mation gain, gain rate, or Gini coefficient are usually used 
to select the optimal segmentation features to minimize 
the data’s uncertainty. The decision tree model is intuitive, 
easy to understand, and suitable for dealing with data with 
nonlinear relationships. However, it is prone to overfitting. 
To improve the generalization ability, it is usually nec-
essary to prune the decision tree or use it in combination 
with other integration methods.

Fig. 16 Schematic representation of the 
approximate classification boundary of the 

decision tree.

3.2 Optimization of swim stroke classification 
algorithm based on acceleration features
This paper uses the above four models to train the sample 
data respectively. The training data and test data are di-
vided into a ratio of 7:3, with 70% of the training data and 
30% of the test data. The data labels are divided into nor-
mal swimming posture and drowning situation. According 
to the difference in extracted features, three datasets are 
constructed in this paper: the one containing only time-do-
main features, the one containing only frequency-domain 
features, and the one containing both time-domain and 
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frequency-domain features. The test results of each model 
on different datasets after training are shown in Table 1. 
This paper uses Precision, Recall, and F1 Score as the pri-
mary evaluation metrics.
Precision, recall, and F1 scores are based on a weighted 
average of the two labels (everyday swimmer and drown-
ing condition) to prevent the evaluation of the model from 
being affected by data imbalance. Precision indicates the 

proportion of samples predicted by the model to be in the 
positive category that are actually in the positive category, 
and recall suggests the proportion of samples that are ac-
tually in the positive category that are correctly predicted 
to be in the positive category. The F1 score is the recon-
ciled mean of precision and recall, which strikes a balance 
between precision and recall and is particularly suitable 
for datasets that are not balanced in category.

Table 2 Classification performance evaluation of four models on different feature datasets

Type of data set mould
Unenhanced y-axis features Enhanced y-axis features
p r e c i -
sion

recall rate F1 score precision recall rate F1 score

Time-domain features 
only

SVM 0.88 0.87 0.87 0.88 0.87 0.87
KNN 0.80 0.79 0.78 0.84 0.81 0.81
decision tree 0.86 0.81 0.83 0.86 0.84 0.84
random forest 0.88 0.86 0.86 0.91 0.91 0.90

Frequency domain 
features only

SVM 0.85 0.84 0.84 0.88 0.87 0.87
KNN 0.73 0.71 0.71 0.76 0.72 0.72
decision tree 0.90 0.85 0.86 0.89 0.88 0.88
random forest 0.92 0.92 0.92 0.94 0.93 0.93

Time & Frequency 
Domain Characteri-
zation

SVM 0.90 0.90 0.89 0.91 0.90 0.90
KNN 0.84 0.83 0.83 0.83 0.83 0.83
decision tree 0.88 0.87 0.87 0.88 0.87 0.87
random forest 0.95 0.94 0.94 0.97 0.95 0.96

The results show that the Random Forest model performs 
well on all f precision, recall, and F1 score datasets. That 
is because Random Forest can effectively deal with high 
dimensional and large-scale data, successfully capturing 
complex patterns in the data by randomly selecting fea-
tures and integrating multiple decision trees. On the con-
trary, KNN performs relatively poorly on all datasets. That 
is because KNN relies on the distance between samples 
for classification. When the dataset has high dimensional-
ity or the samples are unevenly distributed, KNN is sus-
ceptible to “dimensionality catastrophe,” which reduces 

the classification performance.
Meanwhile, after enhancing the y-axis features, we ob-
serve that the model significantly improves precision, 
recall, and F1 score in 85% of the cases, as shown in 
Fig. 17. This result indicates that y-axis acceleration 
plays a vital role in discriminating drowning situations. 
By strengthening the weights of the y-axis features, we 
can recognize drowning events more effectively, thus 
improving the model’s overall performance. This further 
validates the effectiveness of y-axis acceleration as a key 
feature in drowning detection.
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Fig. 17 Comparison of accuracy of different models before and after y-axis feature 
enhancement.

The aforementioned experimental results show that the 
feasibility of the research methodology and hypotheses 
proposed in this paper in the task of drowning detection 
has been preliminarily validated. Although the perfor-
mance of different models varies on specific datasets and 
feature combinations, in general, a variety of commonly 
used machine learning models show potential for appli-
cation in drowning detection in terms of accuracy, recall, 
and F1 score. Particularly noteworthy is that the random 
forest model achieves 97% accuracy on a dataset contain-
ing both time and frequency domain features. That study 
has an enormous scope for development and potential ap-
plications.

4. Conclusion
Fast and timely handling of drowning is crucial for timely 
implementation of rescue measures, and the early warn-
ing scheme based on three-axis acceleration sensor data 
analysis in this paper has strong application potential. In 
this study, we preprocessed the swimming acceleration 
data based on self-collected data and public databases. 
We extracted time-domain and frequency-domain angular 
features from the main motion axes. We compared and op-
timized the results of swimming stroke recognition from 
various machine learning models. This paper proposes an 
innovative early warning processing scheme for drowning, 

which utilizes acceleration sensors in waterproof wrist-
bands worn by ordinary users to achieve real-time moni-
toring. This approach provides a new technical means for 
the traditional drowning prevention technology, enabling 
drowning detection to be more conveniently integrated 
into daily life. This study analyzes and enhances the use-
fulness of acceleration data features in intelligent recogni-
tion techniques for swimming strokes, based on which the 
accuracy of stroke recognition can be improved to 97%, 
which helps to differentiate between regular swimming 
strokes and drowning situations. This paper provides in-
sights into the field of drowning detection techniques by 
exploring the performance of different machine learning 
models on time and frequency domain feature sets.

References
[1] Van Beeck EF, Branche C M, Szpilman D, et al. A new 
definition of drowning: towards documentation and prevention 
of a global public health problem[J]. Bulletin of the World 
Health Organization, 2005, 83: 853-856.
[2] Grmec Š, Strnad M, Podgoršek D. Comparison of the 
characteristics and outcome among patients suffering from out-
of-hospital primary cardiac arrest and drowning victims in 
cardiac arrest[J]. International journal of emergency medicine, 
2009, 2: 7-12.
[3] G.X. Zhao, W.K. Chen. A review of drowning alarm systems 
research in swimming pools [J]. Instrumentation User, 2005, 

13



Dean&Francis
ISSN 2959-6157

12(3):2. DOI:10.3969/j.issn.1671-1041.2005.03.001.
[4] Xiu-Nian Zhang. Research on drowning warning in 
swimming pools based on attitude estimation and edge computing 
[D]. Shanghai: Donghua University,2022.
[5] Xue Y, Jin L. A naturalistic 3D acceleration-based activity 
dataset & benchmark evaluations[C]//2010 IEEE International 
Conference on Systems, Man and Cybernetics. I.e., 2010: 4081-
4085.

[6] Wu Hailong. Analysis and realization of a swimming 
monitoring system based on acceleration sensor [D]. South 
China University of Technology [2024-08-30].DOI:CNKI: 
CDMD:2.1018.875115.
[7] Mooney R, Corley G, Godfrey A, et al. Inertial sensor 
technology for elite swimming performance analysis: a 
systematic review[J]. Sensors, 2015, 16(1): 18.

14




