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Development of a Lightweight Model
for Short-term Prediction of COD
Concentration under Limited Data
Conditions

Abstract:

Yuxuan Ma As a core indicator of the degree of organic pollution in

water bodies, chemical oxygen demand (COD) monitoring
e o Bairomen: Seemes, results directly affect the idggtification of pollutipn
Nenies Add Uiersisy, Sinsasd, events and the response efflglency of water quallty
China management. Traditional detection methods are difficult
to realize continuous high-frequency COD monitoring,
resulting in limited timely response to pollution dynamics,
which seriously impedes the initiative of water quality
management. To address this problem, this paper explores
the construction of a lightweight COD short-term
prediction model with simple structure, low computational
overhead and basic predictive ability based on real water
quality monitoring data of the Weihe River Tieqiao section
in Xianyang City, China, using three models: multiple
linear regression, Lasso regression, and shallow decision
tree. Through pre-processing and feature selection of water
quality-related auxiliary variables, redundant information
was eliminated, and finally pH, total nitrogen (TN), total
phosphorus (TP), ammonia nitrogen (NHs-N), and water
temperature were identified as modeling variables. The
results showed that the multiple linear regression model
performed well in the medium concentration interval, but
systematic bias existed in the high and low concentration
intervals, reflecting the limitations of linear models for
nonlinear features. The study in this paper provides a
simple and effective modeling idea for the prediction
of water quality indicators under resource-constrained
conditions, which helps to improve the early warning
capability and response efficiency in environmental
management.
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1. Introduction

COD (Chemical Oxygen Demand) is a core indicator for
measuring the degree of organic pollution in water bodies,
and its monitoring results directly affect the identification
of pollution events and the efficiency of water quality
management response. Given its critical role in environ-
mental management, timely and accurate monitoring of
COD levels is essential for early warning systems and
pollution control strategies. However, in practical envi-
ronments, COD concentration often fluctuates dramatical-
ly. It changes rapidly, and the commonly used detection
methods, whether standard chemical, spectroscopic, or
online sensors, find it challenging to acquire continuous
and high-frequency dat [1, 2]. Therefore, in daily monitor-
ing, pollution changes often occur, but detection has not
yet responded, and even the dynamics in the early stages
of the trend cannot be captured. This limitation signifi-
cantly hinders proactive water quality management. In
this context, relying solely on traditional detection meth-
ods makes it difficult to achieve continuous observation
and timely judgment of the COD evolution process [2].
Therefore, many studies have attempted to construct pre-
dictive models, using existing observational data to make
short-term speculations on COD trends, to compensate for
monitoring lag and enhance the foresight of water quality
management.

A wide range of predictive models have been developed
for COD forecasting, including artificial neural networks
(ANN)), partial least squares regression (PLS), and ensem-
ble learning techniques. In multiple industrial wastewater
cases, ANN has shown extremely high fitting accuracy (R?
value can reach 0.9997), demonstrating strong nonlinear
modeling capabilities [3]. However, the effectiveness of
the prediction heavily depends on having sufficient and
high-quality input data. When there are swift changes in
concentration, the prediction errors tend to rise noticeably
[4]. Ensemble learning methods—such as combinations of
Random Forest and XGBoost—offer the advantage of in-
tegrating multiple variables and enhancing model robust-
ness. However, their performance remains highly sensi-
tive to the granularity and completeness of input datasets,
thereby imposing greater demands on the precision and
resolution of measurement parameters [5]. In contrast, tra-
ditional linear models such as MLR have meaningful dis-
advantages in accuracy (RMSE can reach 79.6 mg/L), but
their structure is simple, computational cost is low, and
they have deployment advantages [6]. These models have
driven the advancement of COD prediction techniques
from various angles, emphasizing the richness and tech-
nological progress possible through different algorithmic
strategies in this area.
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Although rich algorithmic achievements have been ac-
cumulated in the field of COD prediction, existing re-
search still focuses on improving model performance and
accuracy optimization, and there is a significant lack of
exploration in model simplification and adaptability under
resource constraints. Beyond neural networks, ensemble
models such as random forests and XGBoost have gained
attention. There is still a lack of systematic research on
how to construct models with a simple structure, few pa-
rameters, and low computational overhead while ensuring
basic predictive performance. Therefore, this article focus-
es on this relatively blank direction and explores whether
a COD prediction model with a concise structure, accept-
able prediction accuracy, and practical application poten-
tial can be constructed under limited data and resources.

2. Data collection and pre-processing

2.1 Data Source

This study selects the “Xianyang Iron Bridge” section of
the Weihe River in Xianyang City as the research area,
aiming to construct a short-term COD concentration
prediction model under realistic monitoring conditions.
The data used in this study is obtained from the official
platform of the Ministry of Ecology and Environment of
China—the Real-time Surface Water Quality Automatic
Monitoring Data Publishing System. The dataset spans
from January 2022 to May 2025, providing 6432 valid
daily records and ensuring good continuity, consistency,
and completeness of time series.

This study takes COD as the main predictive target vari-
able. Select seven variables for data pre-processing based
on the range of the original data: pH, dissolved oxygen
(DO), ammonia nitrogen (NHs-N), total nitrogen (TN), to-
tal phosphorus (TP), conductivity, and water temperature.
These variables are consistently measured in water quality
monitoring and theoretically linked to COD variation,
either by affecting the degradation of organic matter or by
indicating broader pollutant loading [7].

2.2 Pre-processing Method

Before establishing the model, this study systematically
cleaned and preprocessed the raw data to ensure the qual-
ity and stability of the input variables. Firstly, convert the
‘Monitoring Time’ field to a timestamp format and set it
as a table index to preserve its time series characteristics.
The forward imputation method addresses missing values
in the data, which replaces the current missing value with
the valid value from the previous moment. The cleaning
results showed 35 missing COD values, and the remaining
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variables were missing between 16-43. After all were suc-
cessfully filled in, the data structure was complete, and the
missing values were reset to zero.

Subsequently, the IQR (interquartile range) method was
used to identify and eliminate outliers in the distribution,
except for COD. One thousand six hundred seventy-seven
samples were cleared, and 4755 valid data were retained.
To make the variables comparable and reduce the im-
pact of scale differences on the model results, all input
variables except COD were Z-score standardized using
StandardScaler in Python, with their mean close to 0 and
standard deviation close to 1, to eliminate the influence
of dimensional differences on the modeling effect. After
completing standardization, merge the COD column into
the dataset to obtain the final modeling data framework.

In addition, to provide a preliminary understanding of the
distribution of auxiliary variables and subsequent feature
selection, Matplotlib was used to generate correlation
heatmaps and outlier boxplots for each variable. There
was a significant collinearity between TN and EC (r=0.82),

and water temperature also showed a strong negative cor-
relation with TN and EC. To reduce the interference of
redundant information and for the careful consideration
of the explanatory power of pollution sources and data
stability, TN and water temperature are retained in the
model, while EC is excluded. The correlation between DO
and COD is low, and the predictive value is limited. Many
outliers in turbidity do not meet the purpose of lightweight
in this article and need to be handled cautiously. The final
selected modeling variables are pH, TN, TP, ammonia
nitrogen, and water temperature, which will be used to
construct the subsequent lightweight prediction model.

To improve data processing efficiency, some Python pro-
gramming and preprocessing operations are completed
under manual supervision using Al tools (ChatGPT),
including the design of code logic suggestions, outlier rec-
ognition methods, and visualization methods. All steps are
executed and verified by the author themselves to ensure
the accuracy of code execution and result interpretation.
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Fig. 1 Distribution of Outlier Box plots for Various Variables

Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
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Picture credit: Original
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Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit: Original

3. Model building

3.1 Model Selection

To achieve the goal of “lightweight modeling,” model se-
lection should simultaneously meet three conditions: con-
cise structure, low computational cost, and certain predic-
tive performance, even under limited sample conditions.
To satisfy the above constraints, this article selects three
representative methods, namely multiple linear regression
(MLR), Lasso regression, and shallow decision tree, for
modeling and comparison.

As the most basic linear model, MLR has a clear structure
and strong interpretability, making it suitable for estab-

lishing baseline performance references. Lasso regression
introduces the L1 regularization term on this basis, which
can automatically screen variables and remove redundant
information while maintaining the model’s explanato-
ry power. The regression tree model that controls depth
controls complexity while retaining a certain degree of
nonlinear fitting ability, enhancing the model’s flexibility.
In addition, to further capture the trend of COD concen-
tration changes in the time dimension, this paper introduc-
es an AR model to model the sequence of historical data
to explore the potential for short-term prediction based
on temporal autocorrelation features. Each model is con-
structed based on the same training dataset and uniformly
analyzed and evaluated using conventional error metrics.

3.2 MLR
3.2.1 Model Training

This model uses the least squares method to establish a
linear relationship between COD and other water quality
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indicators. The input variables are five standardized vari-
ables: TN, TP, NH4, PH, and temperature, and the output
variable is COD concentration. The data is divided into an
80% training set and a 20% testing set. The model is built
on the Python platform and trained and predicted using

the Linear Regression module in Sci-kit Learn. The pa-
rameters are kept at default settings, and no regularization
or cross-validation is introduced.

3.2.2 Prediction Results
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Fig. 3 MLR model prediction result chart

Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit: Original

Figure 3 shows the correspondence between the predicted
results of the multiple linear regression model on the test
set and the actual COD values. The scattered points are
generally distributed around the ideal prediction line, but
the overall point cloud structure shows the characteristics
of “fitting in the middle and deviating at both ends.” This
indicates that the model’s prediction effect is good in the
medium concentration area, but the model’s prediction
error significantly increases in the high and low concen-
tration areas.

In the mainstream range of COD concentration of 3-4 mg/
L, the samples are dense, and the scatter points are mainly
close to the ideal line. The model’s predicted values are
relatively close to the actual values, and the fluctuation
amplitude is small. This result may be related to enough
samples in the interval and the relatively uniform distribu-
tion of data, enabling the model to identify and fit patterns

better. In the part where the COD concentration is higher
than 5 mg/L, the scatter points shift downwards, generally
below the ideal line, showing a systematic underesti-
mation. This indicates that linear models cannot handle
high-value intervals and may not be able to capture the
nonlinear growth characteristics of pollutants at high con-
centrations. In addition, small low-concentration (<2 mg/
L) samples showed mild overestimation, but the overall
impact was relatively small.

The distribution trend of this prediction error may be in-
fluenced by two factors: first, the relatively small number
of high-concentration samples leads to insufficient train-
ing of the model in this interval; second, the relationship
between input variables and COD may have abrupt chang-
es in highly polluted environments, and linear regression
equations cannot explain this trend well.

3.2.3 Model Evaluation
The performance of the multiple linear regression model

on the test set is generally weak, and the evaluation indi-
cators are as follows:



R?: 0.399, The model can only explain about 39.9% of the
variation in COD concentration.

MAE: 0.692, The average deviation between each predict-
ed value and the actual value is close to 0.7 mg/L.

RMSE: 0.903, Indicating significant fluctuations and ex-
treme deviations in the error.

Combined with Fig.3, these indicators reflect that the
model performs well in the middle concentration range
but shows bias when dealing with extremely high or low
COD levels. The overall fitting ability of the model is
limited, and the error distribution structure has the typical
characteristics of “concentrated in the middle and loose at
both ends.”

The fitting equation of this model is as follows:
COD=3.447+0.379pH+0.747TN+0.258 TP-0.06 INH4+0.
501Temp (N

From the regression coefficients, TN and water tempera-
ture have the highest weights in the model, at 0.747 and
0.501, respectively, indicating that they have the strongest
linear explanatory power for COD. This result is consis-
tent with the variable correlation in the previous heat map
analysis, verifying the stable positive correlation between
TN and COD. PH and TP also contribute positively, but
the coefficient is relatively small. It is worth noting that
the coefficient of NH 4 is negative and has the smallest ab-
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solute value, indicating its insufficient explanatory power
in linear models. This may be due to its inconsistent direc-
tion of contribution to COD under different hydrological
conditions or certain multicollinearity effects.

Although the model has a transparent structure, strong
parameter interpretability, and is easy to understand and
deploy, its predictive ability is limited, especially in the
high COD range, where it is difficult to provide adequate
support. This provides a baseline for subsequent models,
but it is difficult to characterize complex pollution fluctua-
tions accurately.

3.3 Lasso

3.3.1 Model Training

Like the MLR model, the dataset is divided into a training
set and a testing set, with a ratio of 8:2. During the model
training process, the optimal value of the regularization
strength parameter a is selected through cross-validation
and optimized based on the evaluation criterion of mini-
mizing the mean absolute error (MAE). The model only
trains variables that the Z-score has standardized to elimi-
nate the influence of dimensional differences on the fitting
process.

3.3.2 Prediction Results

Actual vs Predicted COD (Lasso)
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Fig. 4 Lasso model prediction result chart
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Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit: Original

Figure 4 shows the relationship between the predicted
values of the Lasso regression model on the test set and
the actual COD concentration. In the mainstream range
of COD concentration between 2.7-3.4 mg/L, the samples
are dense, and the predicted points are roughly distributed
near the ideal fitting line, indicating that the model has a
specific fitting ability in this concentration range. How-
ever, it can also be observed in the figure that the model
deviates significantly in the high COD value range (>4mg/
L), and the predicted values are generally lower than the
actual values, indicating that the model’s response to the
increase in pollution concentration has a certain lag.

In addition, in the range of low COD concentration (<2.5
mg/L), some predicted results are significantly concentrat-
ed, basically higher than the fitted line, lacking differenc-
es, and may not accurately reflect the weak fluctuations in
pollution concentration. This phenomenon suggests that
the model tends to compress when processing edge con-
centration samples, affecting its sensitivity to outliers and
rare cases.

The Lasso model can provide relatively stable prediction
trends in the mainstream concentration range of COD
but performs poorly in the extreme range, with a large
distance between the fitted lines and actual fluctuations.
This performance limits its predictive effectiveness in re-
sponding to high pollution events and may make it more
suitable for daily monitoring.

3.3.3 Model Evaluation

The overall performance of the Lasso regression model on
the test set is weak, with the following evaluation metrics:
R%:0.294. The model can only explain about 29.4% of the
variation in COD concentration.

MAE: 0.778. The average deviation between each predict-
ed value and the actual value is close to 0.78 mg/L.
RMSE: 0.978. Indicating significant fluctuations and ex-
treme deviations in the error.

Combined with Fig.4, these indicators reflect that although
the model performs well in the low to medium-concentra-
tion range, it shows significant disadvantages when deal-
ing with high-concentration COD samples. The overall

fitting ability is limited, and the error distribution structure
tends towards the characteristics of “upward pressure” and
“high concentration diffusion” in the predicted results.
The fitting equation of this model is as follows:

COD = 3.446 + 0.392pH + 0.229TN + 0.183TP +
0.001 Temp 2)

From the regression equation, the Lasso model retains the
four variables of pH, TN, TP, and Temp and compresses
the coefficient of NHa to 0, which is not included in the
regression expression, reflecting the sparsity feature of
the model in variable selection. Among them, TN and pH
have the highest weights in the model, with coefficients
of 0.229 and 0.392, respectively, indicating a close rela-
tionship with COD concentration. TP also shows a certain
degree of positive correlation, while temperature variables
have a weaker impact. The overall value of the coefficient
is relatively small, which affects the model’s ability to ex-
press COD changes.

Overall, the Lasso model sacrifices a certain level of pre-
diction accuracy while implementing feature compression.
Although its structure is relatively simple, its ability to
handle complex changes in COD concentration is limited
and insufficient to meet the needs of high-precision pre-
diction.

3.4 Decision Tree Regressor

3.3.1 Model Training

The decision tree regression model uses a nonlinear struc-
ture based on conditional judgment rules. In this study, the
maximum depth is controlled at 4 (max_depth=4) to avoid
overfitting and improve the interpretability and operation-
al efficiency of the model. This model does not rely on
parameter fitting but is based on layer-by-layer partition-
ing of data features for prediction, which is suitable for
scenarios with complex relationships between variables or
significant nonlinear features.

This study used the Python platform to construct a de-
cision tree model, with a data partitioning ratio of 80%
for the training set and 20% for the testing set. Due to its
clear model structure, shallow hierarchy, and fast infer-
ence speed, decision tree regression has good lightweight
characteristics in resource-constrained scenarios.
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Fig. 5 Decision Tree model prediction result chart

Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit: Original

Figure 5 shows the correspondence between the predicted
COD concentration by the decision tree regression model
on the test set and the actual observed values. From the
figure, the overall distribution of predicted values is rel-
atively concentrated, especially in the mainstream range
of COD concentration of 3-5 mg/L. The predicted results
are close to the actual values, showing a certain degree of
fitting ability [8].

In addition, in areas with high (>6 mg/L) or low (<2 mg/L)
COD concentrations, the prediction error has expanded.
Concentrated prediction and repeated values in some sam-
ple values indicate that the model’s expressive ability in
the edge region is limited. Based on the image results, the
model performs robustly in the mainstream sample range
but lacks fine-fitting ability in the extreme value range,
indicating specific issues with its explanatory and general-
ization abilities.

Although the shallow tree structure set in this study lim-
ited model complexity and improved interpretability and
execution efficiency, it also resulted in output values that
were not smooth enough and lacked continuous transition
features. This applies to the lightweight modeling require-
ments in resource-constrained scenarios, but it implies

limitations in dealing with high-complexity pollution fluc-
tuations.

3.3.3 Model Evaluation

The decision tree regression model performs better on the
test set than the two linear models mentioned above, with
the following evaluation metrics:

R2: 0.631. The model can explain approximately 63.1% of
the variation in COD concentration.

MAE: 0.519. The average deviation between each predict-
ed value and the actual value is 0.519 mg/L.

RMSE: 0.707. Indicating relatively few significant ex-
treme deviation values in error.

Figure 5 shows the correspondence between the predict-
ed results and actual values of the decision tree model
on the test set. The model performs relatively accurately
in the low concentration range of COD, and the scatter
points are distributed around the ideal prediction line
with a reasonable degree of fitting. However, in the high
concentration range, especially in areas where the COD
concentration is higher than 6 mg/L, there are biases and
fluctuations in the predicted results, reflecting the weak
generalization ability of the model in sparse sample areas.
In addition, several “horizontally stacked” concentrated
predicted values were in the prediction results, indicating
that the model tends to output discontinuities, consistent
with the essence of segmented prediction in decision tree
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structures.

The decision tree model has good explanatory and predic-
tive abilities, a transparent structure, and flexible variable
processing. It is suitable for lightweight modeling scenar-
ios with limited data scale and high modeling efficiency
requirements in this study. Although there is still some er-
ror in the high concentration range, its overall fitting per-
formance is significantly better than linear models, which
can provide more reliable support for analyzing pollution
concentration trends.

3.5 Auto Regressive Model

This study further introduces a time series model based on
historical data. Based on the first three regression models,
which are constructed based on the cross-sectional rela-
tionship between variables, this study aims to more fully
capture the dynamic trend of COD concentration in the
time dimension. After initial attempts at moving average
(MA) and auto regressive (AR) models, it was found that
the AR model performed better in fitting and stability.
Therefore, the ARIMA (0,0,1) model, a simple auto re-

gressive model, was ultimately chosen.

The model takes standardized COD data as input variables
and uses the complete time series collected earlier (a total
of 4755 items) for modeling. The evaluation results show
that the model’s RMSE on the test set is 0.707, which is
better than the first three regression models. This indicates
that it has a stronger fitting ability for the temporal fluctu-
ation characteristics of COD.

The estimated results of the model are as follows: the
constant term is 3.4586, and the coefficient of the mov-
ing average term (ma. L1) is 0.7837, both of which have
passed the 1% significance level test, further indicating
a significant auto correlation relationship between the
current COD value and the previous period value and are
suitable for short-term trend prediction. In addition, from
the results of the Ljung Box test and Jarque-Bera test of
residuals, the model conforms to the assumptions regard-
ing randomness and normality, and the residual sequence
has no significant auto correlation, which meets the re-
quirements of subsequent analysis.

AR Model Fit on COD Time Series
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Fig. 6 AR Model Fit on COD Times Series

Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit: Original

From the results in Figure 6, the AR model fits the time
variation process of COD concentration well in the overall
trend. The curve is synchronized with the observed values
at multiple peaks and valleys, especially from mid to late
2023 to early 2024. The model can stably capture season-

al fluctuations and sudden upward trends, indicating its
strong practicality and fast response ability in processing
continuous water quality data of this type. However, it can
also be observed that there is a certain deviation in specif-
ic periods (such as early 2022 and around May 2024), and
there is still room for improvement in extreme fluctuations
or sparse sample intervals.

Although the AR model does not involve other environ-
mental variables, its excellent time-fitting performance
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provides an important supplement for COD concentration
prediction within this study’s time scale. In the future, the
prediction results will be compared and explained in con-
junction with the regression model.

4. Result

4.1 Model Comparison

4.1.1 Comparison of prediction performance between
regression model and time series model

To predict COD concentration, this study constructed
three types of regression models, namely multiple linear
regression (MLR), LASSO regression, and decision tree
regression, as well as one type of time series model (au-
toregressive AR), and obtained their respective evaluation

10 4
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indicators. Based on this, the performance of the models
was systematically compared, providing modeling support
for subsequent pollution identification and influencing
factor analysis.

Regarding regression models, the MLR model fits each
input variable through the least squares method. Although
the model structure is simple and the computational cost
is low, its performance in the face of nonlinear pollution
changes is minimal. The R 2 on the test set is only 0.399,
and the RMSE is 0.903, indicating that the model can
only explain 39.9% of COD concentration changes. At the
same time, the prediction bias is significant in high-con-
centration areas, and there is obvious underfitting, which
cannot achieve good prediction within the allowable error
range under the premise of limited data and resources.

NH4 vs COD
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Fig. 7 Scatter Plots of NH4 vs. COD

Data from: National Ministry of Environment. National
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The LASSO model processes feature variables by ap-
plying compression constraints, automatically removing
ammonia nitrogen variables and not including them in the
final prediction equation while retaining the remaining
four input factors. This screening result is not accidental.
From the scatter plot of NH « and COD, it can be observed
that there is no evident linear trend between the two. The
data points show a horizontal band distribution and do not
show significant changes in different concentration inter-

vals. This indicates that the correlation between the NH 4
variable and COD is weak, or its influencing mechanism
is not linearly interpretable. Therefore, ammonia nitrogen
is considered a redundant or noisy variable in the Lasso
screening process, and its removal has a certain rationali-
ty.

However, Lasso indirectly led to a decrease in fitting abili-
ty while reducing the complexity of the model. Compared
with the MLR model, the R 2 (coefficient of determina-
tion) of the LASSO model further decreased to 0.294, and
the RMSE (root mean square error) increased to 0.978, in-
dicating that the fitting effect of the LASSO model in this
data structure is not as good as that of the MLR model.

10
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This may be due to LASSO’s failure to effectively capture
key relationships in the data during variable compression
or insufficient correlation between variables to support ef-
fective compression [9].

The output results of the LASSO model also show the
phenomenon of “centralized prediction and edge col-
lapse,” especially when dealing with extreme value sam-
ples; prediction accuracy significantly decreases. This
may be because LASSO tends to retain variables closely
related to the target variable when selecting variables
while ignoring the complex patterns of change that may
exist in extreme value samples, resulting in poor predic-
tive performance of the model for extreme value samples
[10].

In contrast, as a non-parametric learning method, decision
tree models can segment fit nonlinear relationships and
interactions between variables. In this study, to control
model complexity and enhance interpretability, the max-
imum depth of the tree was set to 4 layers, ensuring that
the model runs in a lightweight framework. The results
showed that the model achieved R ?=0.631, MAE=0.519,
and RMSE=0.707 on the test set and performed best
among all regression models. From the prediction perfor-
mance, the decision tree model fits well in the mainstream
concentration range of COD, maintains a relatively stable
deviation in high-concentration areas, and the error is
randomly distributed without showing systematic drift.
This indicates that the model has balanced fitting ability,
expression accuracy, and noise resistance [11].

The analysis of feature importance shows that TN is the
most important predictor in the model, with a feature
weight of up to 36.4%; Water temperature and pH fol-
lowed closely behind, accounting for 21.9% and 17.8%,
respectively; TP ranks fourth, accounting for 14.6%.
This indicates that TN performs stably in multiple linear
regression and Lasso models and dominates the decision
path in tree models. The ammonia nitrogen that is auto-

11

matically compressed to zero in Lasso also shows the low-
est importance in the decision tree, accounting for only
9.3%, which verifies its limited linear explanatory power
for COD concentration from another perspective.
However, all three regression models are based on the
structure of “predicting target variables with input vari-
ables,” which to some extent relies on the multidimen-
sional integrity of the data and the collaborative changes
between variables. When external influencing factors are
missing, data volatility increases or monitoring frequency
decreases, the adaptability and stability of regression mod-
els will be limited. To overcome this problem, an autore-
gressive time series model was introduced in the study,
which uses “self-historical values” to predict the future
trend of COD concentration, thereby reducing dependence
on the quality and structure of input variables.

The AR model can still achieve an RMSE (0.707) equiv-
alent to that of a decision tree without the involvement of
external variables and can fit pollution fluctuations well
over continuous periods. Compared with regression mod-
els, AR models show better sensitivity to temporal trends
and can reflect the rising or falling pollution trend earlier.
Based on the analysis of comprehensive prediction accu-
racy and model applicability, both the AR model and the
decision tree model have strong predictive performance.
However, the former has more advantages in dynamic
trend capture and deployment simplicity. Therefore, sub-
sequent analysis will be based on the AR model to extrap-
olate pollution trends and identify potential influencing
factors.

4.1.2 AR model prediction analysis for the next 7 days

Figure 8 shows the 7-day (168-hour) trend prediction of
COD concentration based on the AR model. This model
only uses historical COD concentration data for modeling
and extrapolation, and the prediction expression is as fol-
lows:

COD; =3.4586 + 0.9951 x COD 3)
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Fig. 8 AR model prediction (for the next 168 hours)

Data from: National Ministry of Environment. National
Water Quality Automatic Comprehensive Supervision
Platform

Picture credit:Original

Among them, the first-order lag coefficient is close to 1,
indicating that the COD sequence has significant autocor-
relation, and the concentration change in the short term
depends on its previous state. From the predicted curve,
the COD concentration will show a slight fluctuation and
an overall stable, slight decrease trend in the next week,
which is in line with the natural evolution law of region-
al water quality under non-flood season conditions. The
orange line in the figure represents the predicted value,
and the orange shaded area represents the 95% confidence
interval. It gradually expands over time, showing a typical
“fan-shaped” trend, reflecting the uncertainty of the model
in long-term prediction.

To verify the effectiveness of the prediction, this article
introduces 7 days of actual observation data from May
19th to 25th, 2025 and calculates the daily average COD
concentration separately. The measured daily average is as
follows:

May 19th: 4.415 mg/L; May 20th: 4.914; May 21st: 4.621;
May 22nd: 4.694; May 23rd: 4.544; May 24th: 4.845;
May 25th: 4.907.

Comparing these measured data with the predicted results
of the AR model, the two maintain a high consistency
in overall trends and values. From May 21st to 23rd, the
difference between the predicted and measured values
was slight, indicating that the model can continue the
primary trend. All measured values are within the pre-
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dicted interval, indicating that the model has a reasonable
confidence range and basic boundary control capability.
Further quantitative evaluation was conducted to obtain
the mean absolute error (MAE) and root mean square er-
ror (RMSE) between the predicted and measured values
of the AR model, which were 0.183 mg/L and 0.210 mg/L,
respectively. This error level is within the allowable range
of typical surface water pollution monitoring accuracy,
indicating that the model is reliable in fitting COD con-
centration in the short term [12].

From the perspective of error distribution, the most signif-
icant errors in the 7 days occurred on May 20th and May
24th. The measured COD values for these two days were
slightly higher than the overall trend, while the model-pre-
dicted values were more stable, showing a phenomenon
of “underestimating the peak.” This deviation reflects the
response lag of the AR model in dealing with local abnor-
mal fluctuations, which is an inherent limitation of its uni-
variate linear structure. The model only uses the previous
period values for recursion, lacking the ability to perceive
non-linear jumps or external sudden disturbances. There-
fore, when faced with occasional increases in actual data,
the predicted values tend to be conservative, which lowers
accuracy. During relatively stable COD concentrations
(such as May 21-23), the AR model’s predicted results are
highly consistent with the measured values, with an error
controlled within + 0.1 mg/L. This indicates that the AR
model has good trend continuity in environments with
small fluctuations and strong trend continuity and stabili-
ty. This is especially suitable for early warning judgment
of short-term water quality changes.
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Although the model has a certain degree of delayed re-
sponse at extreme values or mutation points, its overall
error level is low, and it exhibits a strong fitting force in
the trend area. Considering its advantages of simple struc-
ture, low training requirements, and no need for additional
feature variables, AR models can be used as effective
prediction tools in lightweight monitoring scenarios. They
are especially suitable for regional water monitoring tasks
with continuous and controllable data fluctuations.

4.2 Analysis of influencing factors

Among the various regression models constructed in this
study, the feature importance ranking of the decision tree
model provides a quantitative basis for analyzing the main
control factors of COD concentration changes. Specifi-
cally, total nitrogen has the highest importance among all
input variables, at 0.364, followed by water temperature
and pH, at 0.219 and 0.178, respectively. Total phospho-
rus and ammonia nitrogen have lower importance, at 0.146
and 0.093, respectively. Meanwhile, in the LASSO model,
ammonia nitrogen was not included in the final equation
due to its weight being compressed to zero, further con-
firming its insufficient contribution to the current data
structure.

From the perspective of synergistic changes in pollutants,
COD concentration reflects the organic pollution load that
can be oxidized in water bodies, which includes both nat-
ural sources (such as humus) and human activity sources
(such as domestic sewage and agricultural runoff) [13]. As
a common nutrient, total nitrogen is widely present in do-
mestic wastewater, agricultural leachate, and some indus-
trial wastewater. Its source and distribution often overlap
highly with COD.

In the Xianyang Weihe River Basin, the significant loss
of nitrogen fertilizer has significantly increased the con-
centration of TN in the water. It may drive the increase
of COD levels through various mechanisms. On the one
hand, excessive application of nitrogen fertilizer enters
water bodies in the form of runoff under rainfall or ir-
rigation conditions, which not only increases the input
of inorganic nitrogen but also carries crop residues and
other organic matter, increasing the organic load in water
bodies; On the other hand, the enrichment of nitrogen
promotes microbial activity, and microorganisms consume
a large amount of dissolved oxygen during the decompo-
sition of organic matter, further pushing up COD. In ad-
dition, rural aquaculture and agricultural non-point source
pollution are commonly present in the region, showing
a superimposed trend, exacerbating the compound input
of nitrogen and organic matter. Existing monitoring data
shows that the annual COD emissions from agricultural
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sources in the Weihe River Basin reach 125700 tons, with
ammonia nitrogen at 6700 tons, of which rural breeding
and fertilizer application are considered the main sourc-
es. Therefore, while nitrogen fertilizer loss increases TN
concentration, it is indeed accompanied by mechanistic
organic matter input, which has a significant impact on
COD concentration [14]. In other words, the statistical
correlation between TN and COD reflects the consistency
of their pollution source structures.

The impact mechanism of water temperature is more
reflected in the regulation of ecological and chemical pro-
cesses. Higher temperatures enhance microbial activity
in water bodies, thereby accelerating the decomposition
of organic matter. At the same time, it may also trigger
sediment release, inhibit dissolved oxygen, and indirectly
increase COD concentration [15]. Especially before and
after the rainstorm, the disturbance of the water body in-
creases, and the organic particles are easily resuspended,
further stimulating the short-term fluctuation of COD.
Water temperature can be a good input variable and reflect
information on meteorological and hydrodynamic pro-
cesses.

Although pH value is not a widely defined direct pollutant
indicator, its changes have a significant regulatory effect
on water environmental processes. On the one hand, pH
affects the dissolution equilibrium of metal ions and nu-
trients, indirectly affecting the stability and availability of
organic matter. On the other hand, pH also determines the
structure and metabolic pathways of microbial commu-
nities in water bodies, thereby affecting the degradation
efficiency of organic matter. Most microorganisms exhibit
high activity in neutral to weakly alkaline environments,
while their organic matter degradation rate may be limited
under acidic or strongly alkaline conditions [16].

The measured data in this study area indicate that the pH
value is stable primarily, around 8.0, in a relatively typical
weakly alkaline environment. In this context, pH ranks
third in importance in the model, reflecting its indirect
regulatory effects on microbial activity and organic matter
conversion processes. On the one hand, stable alkaline
conditions may facilitate the continuous decomposition
of organic matter, thereby affecting the dynamic changes
in COD concentration. On the other hand, slight fluctua-
tions in pH may also alter microbial community function,
causing periodic fluctuations in degradation capacity.
Therefore, although pH is not a direct source of pollution
load, its performance in predictive models still reveals its
potential role as a water quality regulating factor.

Total phosphorus and ammonia nitrogen did not show
significant predictive ability in this dataset. TP often exists
in granular form, and its mobility is poor in non-rainstorm
seasons, so it is difficult to dominate COD changes quick-



ly. Although NH 4 is an important form of nitrogen, its
correlation with organic pollution is not as strong as TN
overall, and its numerical fluctuation is relatively high,
which may be weakened in modeling due to its “noise” at-
tribute. In both LASSO and decision tree models, there is
a weak correlation or a tendency to be excluded, indicat-
ing that their role in the watershed and dataset is relatively
marginal.

This study did not directly introduce hydrological and
meteorological factors such as precipitation, flow velocity,
and runoff intensity. However, water temperature indirect-
ly carries information about seasonality and environmen-
tal disturbances. Previous studies have shown that COD
concentration exhibits significant seasonal fluctuations,
driven by multiple factors such as rainfall and climate [17].
Afterward, external variables such as meteorological data,
land use types, and flow velocity changes can be incor-
porated into the modeling system to improve predictive
capabilities further.

Overall, the variation of COD concentration is influenced
by multiple factors such as pollution source structure (such
as nitrogen and phosphorus load), physical environment
(such as water temperature and pH), and seasonal distur-
bances. In this study’s dataset and watershed context, total
nitrogen, water temperature, and pH constitute the core
explanatory variables and dominate model prediction.

5. Conclusion

In this paper, the applicability of three lightweight predic-
tion models is proposed and verified to address the realis-
tic challenges of discontinuous data acquisition and low
frequency in COD monitoring. Through the systematic
preprocessing and variable screening of the monitoring
data of Weihe River Tieqiao section, the input variables
of the model were reasonably streamlined. The multiple
linear regression model is suitable as the baseline of the
lightweight model due to its simple structure and low
computational cost, but its prediction accuracy is insuffi-
cient in the extreme value interval, suggesting that future
research should consider introducing a moderate non-
linear component to enhance the prediction ability. This
paper shows that under the conditions of limited data and
computational resources, relying on traditional statistical
methods can also realize the effective prediction of COD
short-term trend, which provides a feasible path for the
continuity and timeliness of water quality monitoring, and
has practical application value for improving the level of
water environment management. In the future, the mod-
el performance can be further optimized by combining
more time series information and improving the algorithm
structure.
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