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The Application Status and Prospect of
Deep Reinforcement Learning in the Smart
Grid

Abstract:

Jiacheng Sui’” Deep reinforcement learning has strong capabilities in
data analysis, prediction, and autonomous learning, and
it is highly compatible with the demand for big data
applications in various aspects of the smart grid. Firstly,
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characteristics. It reviews the current status of the
application of deep reinforcement learning in the smart grid
system in aspects such as fault diagnosis, load and new
energy power prediction, and power dispatch. In view of
the technical characteristics of deep reinforcement learning,
combined with the various production links of the power
system, an application framework of deep reinforcement
learning technology in the power system is established.
Finally, the application of deep reinforcement learning
is prospected from aspects such as the operation control
of multi-energy systems, system security analysis, fault
diagnosis of flexible equipment, and privacy information
security protection.
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1. Introduction cessing capabilities to achieve real-time monitoring,
] ] adaptive control, and efficient management of the
With the deep adjustment of energy structure and the power system, becoming a key support for achieving

large-scale integration of renewable energy, tradition- clean, efficient, and reliable power supply system
al power grids are facing unprecedented challenges, [1].

such as increased load volatility, decentralized ener-
gy distribution, and increased system operation com-
plexity. In this context, smart grids have emerged.
The smart grid integrates advanced sensing technolo-
gy, communication technology, and information pro-

In order to better cope with the complex deci-
sion-making problems and dynamic environment
in the smart grid, artificial intelligence technology,
especially machine learning (ML), has been widely
introduced in recent years. Machine learning can



assist power grid systems in achieving various intelligent
functions such as state estimation, load forecasting, and
equipment fault diagnosis by learning and modeling his-
torical data. However, traditional machine learning mod-
els still have certain limitations when dealing with deci-
sion optimization problems in high-dimensional dynamic
environments.

Deep Reinforcement Learning (DRL), as an emerging
research direction that combines deep learning and rein-
forcement learning, has shown great potential in the fields
of intelligent control and optimization in recent years.
DRL can learn optimal strategies through interaction with
the environment without supervised data labels, espe-
cially suitable for complex tasks with high dynamics and
uncertainties such as energy scheduling, electric vehicle
charging and discharging management, and demand re-
sponse in smart grids [2]. Therefore, exploring the current
application status and future development directions of
deep reinforcement learning in smart grids is of great
significance for promoting the development of smart grid
systems towards a more intelligent, autonomous, and effi-
cient direction.

2. Deep Reinforcement Learning

2.1 Technical Overview

Deep reinforcement learning (DRL) is a method that
combines reinforcement learning (RL) and deep learning,
aiming to enable agents to learn strategies that maximize
long-term rewards in unsupervised contexts through in-
teraction with the environment. Traditional reinforcement
learning methods, such as Q-learning and SARSA, rely
on table form or shallow function approximation and are
difficult to handle high-dimensional state spaces. Deep
learning provides the possibility to solve high-dimension-
al decision problems by approximating complex functions
through multi-layer neural networks. DRL approximates
the strategy function, value function, or joint distribution
of strategy and value through deep neural networks, there-
by achieving effective solutions to complex decision-mak-
ing problems.

The rise of deep reinforcement learning can be traced back
to Mnih et al.’s groundbreaking work, Deep Q-Network
(DQN), published in the journal Nature in 2015 [3]. This
method has reached a level close to or even surpassing
that of humans for the first time in multiple Atari games,
marking the successful application of deep learning in
reinforcement learning. Subsequently, numerous variant
methods have been proposed, such as Double DQN, Du-
eling DQN, Prioritized Experience Replay, etc., aimed at
improving the stability and sample efficiency of learning.
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Another important type of method is Policy Gradient
Methods, with representative algorithms including RE-
INFORCE, Actor Critic, Proximal Policy Optimization
(PPO), and Deep Deterministic Policy Gradient (DDPG).
These methods are particularly suitable for control prob-
lems in continuous action spaces. In the PPO algorithm
proposed by Schulman et al., the stability and convergence
speed of training were effectively improved by updating
the amplitude through constraint strategies [4].

With the deepening of research, DRL has gradually been
applied to multiple complex systems such as energy
systems, autonomous driving, and robot control, demon-
strating good generalization ability and robustness. In the
smart grid scenario, DRL is widely used in tasks such as
energy storage optimization scheduling, electric vehicle
charging strategies, and demand response management,
and has extremely high application value.

2.2 Typical Algorithm

2.2.1 Discrete intelligent control strategy based on
DQN

DQN (Deep Q-Network) combines traditional Q-learning
with convolutional neural networks to output efficient
optimal action strategies in complex state spaces, making
it suitable for optimization tasks in discrete action spac-
es. Zhang et al. proposed a distributed electric vehicle
charging control method based on DQN. By constructing
a multi-agent environment and combining local state
features for strategy learning, they achieved time of use
charging optimization under dynamic electricity price
changes, significantly reducing system peak load and user
electricity costs [5]. This type of method has positive sig-
nificance for the safe operation of the power grid during
peak periods of electric travel.

2.2.2 Energy management under continuous control
based on DDPG

DDPG (Deep Deterministic Policy Gradient) is a typical
algorithm for handling continuous action space problems,
which achieves efficient learning of high-dimensional
control variables through the Actor Critic architecture
and policy gradient method. Wang et al. introduced the
DDPG algorithm into a multi-source system containing
photovoltaic, energy storage, and electric vehicle loads
when studying the energy management problem of house-
hold microgrids. They considered real-time electricity
prices and load prediction errors, and obtained the optimal
charging and discharging strategy through end-to-end
training, effectively improving energy utilization efficien-
cy and economy [6]. The advantage of DDPG in energy
storage system scheduling is that it can naturally handle



Dean&Francis

ISSN 2959-6157

continuous variables such as charging and discharging
power, avoiding the accuracy loss caused by action dis-
cretization.

2.2.3 Robust distributed scheduling optimization based
on PPO

Proximal Policy Optimization (PPO) is a policy opti-
mization method that balances stability and efficiency.
Its introduced Trust Region update policy can avoid the
problem of performance degradation caused by excessive
policy updates. Xu et al. applied the PPO algorithm to
the intelligent scheduling problem of multi energy sys-
tems, constructing a comprehensive energy system that
considers the coordinated operation of wind power, pho-
tovoltaic power, and thermal energy. They achieved fast
convergence and good generalization ability of scheduling
strategies through a parallel policy update mechanism,
verifying the strong adaptability of the PPO algorithm in
multi scenario power grid environments [7]. This method
is particularly suitable for practical power grid scenarios
with uncertain inputs.

2.2.4 High entropy intelligent scheduling strategy
based on SAC

Soft Actor Critic (SAC) encourages agents to fully ex-
plore in the early stages of policy learning by maximizing
policy entropy, thereby enhancing robustness in complex
environments. Han et al. introduced the SAC algorithm in
the joint scheduling problem of wind power and energy
storage. By constructing a Markov decision process and
considering the uncertainty of wind power output and
capacity constraints of the energy storage system, they
designed an entropy regularization term to enhance the
diversity and response flexibility of the strategy. The ex-
perimental results showed that the SAC strategy has better
convergence and robustness compared to methods such as
DDPG, and has good application prospects in scenarios
with significant wind wave dynamics [8].

2.2.5 Collaborative application of multi-agent deep re-
inforcement learning in multi node systems

In actual power grid operation, there are multiple indepen-
dent and autonomous energy entities (such as residential
users, regional microgrids, etc.), and their interactive
behavior is often difficult to capture by modeling with a
single agent. Multi-Agent Deep Reinforcement Learn-
ing(MADRL) Collaborative optimization control between
system levels can be achieved through multi-agent paral-
lel learning and game coordination. Zhang et al. applied
the MADRL method to user side intelligent load control,
learning response strategies of different users through
multiple agents to achieve refined management of electric-
ity consumption behavior and optimization of the overall

load curve of the power grid [9]. The MADRL method
is applicable to multi-agent interaction problems such as
demand response and regional power grid collaborative
scheduling, and is currently one of the hot research direc-
tions in smart grid.

Based on the above, deep reinforcement learning technol-
ogy is gradually moving from theoretical research to engi-
neering practice in smart grids, demonstrating significant
flexibility, scalability, and data-driven modeling capabil-
ities. In the future, DRL can be combined with emerging
artificial intelligence methods such as Graph Neural Net-
works (GNN), Federated Learning, and Transfer Learning
to further enhance its generalization ability and safety reli-
ability in multi-source heterogeneous, strong time-varying
large-scale power systems, and promote the development
of smart grids towards a more intelligent, autonomous,
and low-carbon direction.

3. The Current Application Status
of Deep Reinforcement Learning in
Smart Grid

3.1 Fault Diagnosis of Power Equipment and
Systems

With the increasing complexity of the power grid struc-
ture, traditional rule-based diagnostic methods have
shown certain limitations in dealing with fault diversity,
speed, and concealment. Deep reinforcement learning pro-
vides a dynamic and adaptive alternative that continuous-
ly optimizes decision strategies during training, achieving
real-time and accurate fault recognition and response.

In the fields of transmission line protection, distribution
network fault location, and circuit breaker anomaly de-
tection, researchers have attempted to construct strategy
networks based on Deep Q-Network (DQN) or Near End
Policy Optimization (PPO) to replace fixed expert sys-
tems.

In higher dimensional systems, modeling based on graph
structure information is gradually becoming a trend.
Research has shown that transforming the power grid
topology into a graph structure input graph convolutional
network (GCN) and embedding it into a DRL framework
can achieve stronger perception ability and broader fault
generalization performance. This type of method is par-
ticularly suitable for scenarios with flexible structures but
strong information dependence, such as complex distribu-
tion systems and flexible transmission systems.

3.2 Load and New Energy Power Forecasting

The operation of the power system relies on accurate pre-



diction of future load demand and renewable energy out-
put. Especially in the context of the increasing penetration
rate of new energy, external variables such as wind speed
and solar irradiance lead to strong fluctuations and high
nonlinearity in output, seriously affecting system schedul-
ing and stable operation.

Traditional prediction methods, such as regression analy-
sis, ARIMA, SVR, etc., rely on a large number of histor-
ical samples for training and are difficult to cope with the
evolution of system behavior after sudden events or policy
adjustments. Deep reinforcement learning provides a new
path for optimizing long-term prediction accuracy. Unlike
static prediction models, DRL models can continuously
update strategies from real-time feedback during the pre-
diction process, achieving rolling prediction and dynamic
correction.

In terms of joint prediction, for multi regional and multi
energy interconnected systems, DRL can autonomously
determine the prediction weights of key regions based
on real-time data streams, forming an overall prediction
strategy. Such methods have important potential in the
development of regional energy internet and new power
system.

3.3 Power Dispatch

As one of the core tasks of power grid operation, power
dispatching is often based on deterministic or stochastic
optimization algorithms, such as linear programming (LP),
dynamic programming (DP), genetic algorithm (GA), etc.
However, these methods generally rely on precise mod-
eling of the system and are difficult to adapt to real-time
changes and large-scale variable optimization in complex
situations.

DRL solves the optimal decision-making problem of “state
action benefit” in power dispatch problems through strat-
egy learning, and has strong model adaptability. This type
of method is applicable to multiple sub fields such as load
response, microgrid energy management, and optimiza-
tion of electric vehicle (EV) charging and discharging.
Some studies focus on using reinforcement learning for
dynamic pricing strategy formulation, thereby guiding
user behavior to adjust the load curve and achieve pro-
active demand response. For example, the pricing model
using the Actor Critic framework can adjust the optimal
electricity price based on real-time load changes and user
elasticity, guide load to shift to the valley, and effectively
alleviate peak load pressure.

Reinforcement learning has also been successfully ap-
plied in the charging scheduling of electric vehicles. By
learning user travel patterns, electricity price trends, and
grid carrying capacity, a reasonable charging schedule is
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constructed to achieve resource sharing and system load
balancing.

3.4 Summary of Application Status

In recent years, the research on deep reinforcement learn-
ing (DRL) in smart grids has continued to heat up, and
related applications have gradually been launched in
multiple key fields, showing good prospects and practical
value. Currently, DRL has gradually achieved practical
results in power equipment status diagnosis, load and new
energy power prediction, power dispatch optimization,
and is becoming an important technical support for pro-
moting the intelligent transformation of the power grid.
Compared with traditional control or prediction models,
DRL has high adaptability and strong generalization abil-
ity, and can continuously optimize strategies in complex
state spaces through continuous interaction with the envi-
ronment. This makes it particularly suitable for problem
scenarios with strong dynamics, uncertainty, and nonlinear
characteristics in smart grids, such as distributed energy
scheduling, electric vehicle group charging and discharg-
ing management, multi regional collaborative operation,
and other tasks.

Current research indicates that deep reinforcement learn-
ing has the ability to integrate multiple deep network
structures, such as embedding graph neural networks
(GNNs), convolutional neural networks (CNNs), or long
short-term memory networks (LSTMs) into policy net-
works, which can effectively enhance the modeling accu-
racy of power grid topology, temporal sequence features,
and device relationships. In addition, Multi Agent DRL
(Multi Agent DRL) has shown significant advantages in
scenarios such as regional autonomous control, energy
storage system management, and virtual power plant game
strategies as a way to address the multi-source distribut-
ed characteristics of power grid systems. Its distributed
collaborative learning mechanism can gradually approach
the global optimal solution of the system while ensuring
local optima, thus meeting the operational requirements
of modern power grids for the coexistence of “autonomy,
collaboration, and optimization”.

However, the application of deep reinforcement learning
still faces many challenges. On the one hand, it has a
high dependence on the number of training samples and
the number of environmental interactions, and in actual
deployment, there is often a lack of sufficient real running
data. Relying on simulation environment training can
introduce bias and affect the transferability of the strate-
gy. On the other hand, the “black box” attribute of DRL
models still results in insufficient interpretability and se-
curity, lacking clear decision logic outputs and behavior
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boundary control mechanisms, which pose significant ob-
stacles in the critical infrastructure field of smart grids. In
addition, most existing research focuses on single objec-
tive optimization, and further theoretical and algorithmic
breakthroughs are needed to achieve multi-objective co-
ordination between ensuring operational economy, safety,
and carbon reduction goals.

Looking towards the future, research on deep reinforce-
ment learning in smart grids is expected to further ad-
vance in the following directions. Firstly, at the model
level, combining DRL with advanced structures such as
graph neural networks, attention mechanisms, and meta
learning can enhance its modeling capability and policy
robustness in large-scale power grid systems. Secondly, at
the data level, introducing a federated learning framework
to achieve cross regional collaborative training while pro-
tecting data privacy and improving model generalization
performance is also a feasible path. In addition, for the
implementation of the project, it is necessary to strengthen
research in constraint learning, safety learning, strategy
verification mechanisms, and other aspects to ensure its
stable operation and safety guarantee in the real power
grid. At the policy level, promoting the development of
standards and industry norms for Al technology in smart
grids will also provide institutional guarantees for its com-
prehensive implementation.

The application of deep reinforcement learning in smart
grids is gradually advancing from theoretical verifica-
tion to engineering practice. Through its ability to learn
strategies and optimize decisions, it is expected to play
an important role in multiple aspects such as power grid
operation scheduling, load regulation, and resource opti-
mization. In the future, with the continuous maturity of
relevant algorithms and the increasingly perfect system
architecture, DRL is expected to become a key technical
pillar for achieving efficient, intelligent, and autonomous
operation of smart grids.

4. Conclusion

With the continuous optimization of energy structure and
the gradual construction of intelligent power grid system,
the application prospects of Deep Reinforcement Learn-
ing (DRL) in smart grid are becoming increasingly broad.
As an intelligent technology that integrates perception,
decision-making, and control, DRL has demonstrated sig-
nificant advantages in dealing with complex, high-dimen-
sional, and nonlinear environmental problems. However,
current research mostly focuses on theoretical verification
and simulation, and its engineering deployment in real
power systems still faces many challenges. In order to
further promote the practical and large-scale development

of this technology, future research can be carried out from
the following aspects.

Firstly, the security and robustness of the algorithm should
be enhanced to ensure its reliability in critical tasks of the
power system. The smart grid has extremely high require-
ments for operational safety, and DRL models must have
clear safety boundaries and fault-tolerant mechanisms in
practical deployment. Therefore, introducing frameworks
such as Safe RL and Constrained RL can help meet the
physical and security constraints of system operation
during policy learning, thereby ensuring the controllabil-
ity of decision-making behavior and the stability of the
system.

Improving the generalization and transfer learning abili-
ties of DRL models is the key to achieving their engineer-
ing generalization. The existing methods generally rely on
data and simulation environments in specific scenarios,
lacking sufficient transferability and adaptability. In the
future, cross task learning mechanisms such as federated
learning and meta learning can be used to achieve knowl-
edge sharing between different power grid regions while
ensuring data privacy, significantly improving the general-
ity and training efficiency of the model.

Interpretability is another core issue in the application of
DRL to practical smart grid systems. Due to the complex
structure of its deep neural network and the difficulty in
intuitively analyzing the policy generation process, it
lacks sufficient transparency and trustworthiness. There-
fore, constructing interpretable DRL models, introducing
attention mechanisms, and conducting strategy visualiza-
tion research will help improve the understanding and ac-
ceptance of system intelligent behavior by operation and
maintenance personnel, and enhance the controllability
and auditability of the model in practical engineering.

In addition, multi-agent deep reinforcement learning
(Multi Agent DRL), as an effective means to address the
strong characteristics of distributed and heterogeneous
power grids, will play a more important role in the fu-
ture. By building a regional autonomous intelligent agent
group, the unity of local control and global coordination
can be achieved, which can significantly improve the
response speed and overall operational efficiency of the
power grid system. However, multi-agent systems still
face complex technical challenges in communication co-
ordination, collaborative decision-making, and policy con-
vergence, and there is an urgent need for further in-depth
research in system architecture, interaction protocols, and
distributed optimization algorithms.

We should strengthen the standardization and interdisci-
plinary integration of deep reinforcement learning in the
field of smart grids. Future research not only needs to fo-
cus on algorithm level optimization, but also needs to col-



laborate with experts from multiple fields such as power
systems, artificial intelligence, systems engineering, and
control theory to establish unified data interfaces, evalu-
ation standards, and deployment specifications. In addi-
tion, policy guidance and industry collaboration will also
become important guarantees for promoting technology
implementation, especially in areas such as data security,
network communication, and equipment collaboration,
corresponding standards should be formulated to ensure
the trustworthy, controllable, and sustainable development
of artificial intelligence technology in the smart grid.

In summary, deep reinforcement learning technology,
as an algorithm framework with highly intelligent and
adaptive capabilities, is expected to play a key role in
the development process of smart grids. In the future,
through the collaborative promotion of algorithm inno-
vation, platform construction, standard construction, and
engineering verification, DRL will play an irreplaceable
role in promoting the development of smart grids towards
higher-level autonomous operation and collaborative opti-
mization.
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