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Abstract:

Multi-object tracking (MOT) stands as a core task in
computer vision, long constrained by the separated
paradigm of detection and association, which leads to
error accumulation and semantic fragmentation. The rise
of the Transformer architecture has introduced a new
paradigm for end-to-end tracking. The MOTR series
of methods progressively achieves deep integration
of detection and tracking through innovations such as
tracking queries and dynamic supervision balancing. This
paper systematically analyzes the technological evolution
of MOTR, MOTRv2, and MOTRvV3, conducting a three-
dimensional analysis from the dimensions of architecture
design, training strategies, and performance optimization.
Based on experimental results from multi-scenario datasets
such as DanceTrack and MOT17, this study quantitatively
evaluates the performance differences among models in
spatio-temporal modeling, computational efficiency, and
generalization ability. The results show that MOTRv3
achieves a performance breakthrough with 70.4%
HOTA in a pure end-to-end framework through three
strategies: Release-Fetch Supervision (RFS), Pseudo Label
Distillation (PLD), and Track Group Denoising (TGD).
However, its robustness in long-term occlusion scenarios
and computational costs still require optimization. Finally,
combined with current technical challenges, prospective
outlooks are provided for future directions such as
lightweight design, cross-modal fusion, and self-supervised
learning.

Keywords: Multi-object tracking, Transformer, MOTR,
MOTRv2, MOTRv3

1. Introduction

1.1 Research Background and Significance

Multi-object tracking (MOT), which involves iden-
tifying and continuously tracking multiple targets in
video sequences, is a fundamental yet challenging
task in computer vision. Its applications span intelli-
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gent transportation, security monitoring, and autonomous
driving [1]. Traditional MOT methods typically adopt a
two-stage pipeline: first detecting targets in each frame
using models like YOLO [2], then associating them across
frames via appearance features or motion models [3].
However, this modular design suffers from inherent draw-
backs, such as error propagation from detection to associ-
ation and the inability to leverage global spatio-temporal
dependencies.

The Transformer architecture [4], with its self-attention
mechanism, has revolutionized sequence modeling tasks
by enabling global context capture. In object detection,
DETR [5] demonstrated the feasibility of end-to-end set
prediction, inspiring the application of Transformer to
MOT. The MOTR series emerges as a key advancement,
aiming to unify detection and tracking within a single
Transformer framework to overcome the limitations of
traditional methods.

1.2 Research Status at Home and Abroad

Current multi-object tracking research mainly focuses on
two categories of methods:

Traditional methods with separated detection and associ-
ation: Representative methods include DeepSORT, JDE
[3], FairMOT [4], etc. These methods first use detectors
to detect targets in each frame, extract their features, and
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then associate the features of each target to form multiple
target trajectories to achieve tracking. However, in such
detection-based tracking methods [5], since the detection
and association modules are independent and executed
sequentially, the tracking results largely depend on the
performance of the detector, reducing the accuracy and
computational efficiency of multi-object tracking.
Integrated methods with joint modeling of detection and
tracking: Such as TrackFormer [6], TransTrack [7], ViT
[8], etc., which are mostly based on the Transformer
framework. These methods can achieve end-to-end train-
ing and inference in the same network, demonstrating bet-
ter performance in accuracy and association robustness.

2. Theories Related to Multi-Object
Tracking

2.1 Basic Concepts and Methods of Multi-Ob-
ject Tracking

MOT aims to detect and track multiple moving targets
from video sequences while maintaining the unique iden-
tity of each target throughout the video. A typical MOT
system usually includes the following key modules: object
detection, object association, and trajectory management.
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Figure 1 Flowchart of multi-object tracking

First, all targets in the video frame are identified, and their
position information (localization) is obtained. Next, the
targets detected in different frames are matched to identi-
fy which belong to the same target, thereby constructing
continuous trajectories. Finally, situations such as targets
entering or exiting the frame or short-term occlusion are
handled to initialize, update, or terminate trajectories.

2.2 Principle of the Transformer Architecture

The Transformer model is a powerful deep learning ar-
chitecture that uses self-attention mechanisms and multi-
head attention to capture dependency relationships within
sequences and introduces positional information through
positional encoding. It is essentially an encoder-decoder
architecture based on self-attention mechanisms, which



can effectively handle sequence-to-sequence tasks and
capture long-range dependencies in input sequences. The
Transformer architecture is naturally suitable for process-
ing sequence data. In image tasks, an input image can be
divided into several patches, and each patch is represented
by an embedding vector, thus converting image data into
sequence data. This processing method enables the Trans-
former to perform global modeling of image features,
avoiding the limited receptive field defect in traditional
CNNEs.
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Figure 2 Structure of the Transformer

2.3 Application Potential of Transformer in
Multi-Object Tracking

With the continuous advancement of deep learning, end-
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to-end joint detection and tracking methods have in-
creasingly become a research hotspot. These approaches
integrate detection and tracking into a unified network for
joint training, enabling seamless information sharing and
global optimization of spatial-temporal features. In the
vision field [9], particularly in object detection and track-
ing tasks, the Transformer architecture demonstrates dual
capabilities: it not only models the spatial relationships
of intra-frame objects (e.g., occlusions, relative positions)
through self-attention mechanisms but also captures cross-
frame temporal dependencies via encoder-decoder itera-
tive updates. By extracting global contextual information
from images, Transformers enhance the model’s ability to
understand complex target interactions, such as hierarchi-
cal structures in crowded scenes or semantic correlations
between moving objects.

A notable example is the DETR [10] detector, which in-
novatively combines CNN backbones with Transformer
encoder-decoder structures. DETR’s set prediction frame-
work eliminates traditional post-processing steps (e.g.,
NMS) and achieves end-to-end object detection with
superior performance on COCO and other datasets. Its
success lies in leveraging Transformer’s global modeling
to address the limitations of CNN’s local receptive fields,
particularly for small objects and distant targets. More
importantly, DETR’s architectural design—especially the
concept of learnable queries—provides a critical founda-
tion for subsequent multi-object tracking (MOT) methods.
For instance, by extending detection queries to include
“tracking queries” that propagate across frames, models
like MOTR [11] have established a unified framework for
end-to-end MOT, seamlessly integrating spatial detection
and temporal association.

This evolution highlights how Transformer-based archi-
tectures are reshaping the MOT landscape by enabling
joint optimization of spatial-temporal features. As a cor-
nerstone, DETR [10] not only advances object detection
but also paves the way for more efficient and coherent
multi-object tracking solutions, embodying the transfor-
mative potential of end-to-end learning in computer vi-
sion.
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Fig. 3 Structure of DETR

MOTR [11], built on DETR and its derivative models, has
become a representative of online tracking. MeMOT [12],
an end-to-end tracking method similar to MOTR, focuses
on target state prediction based on attention mechanisms.
Although these methods have pioneered new tracking par-
adigms, their performance still needs improvement com-
pared with the current state-of-the-art tracking algorithms.

3. Principle Analysis of MOTR Series
Methods

With the widespread application of the Transformer ar-
chitecture in computer vision, an increasing number of
researchers have introduced it into multi-object tracking
(MOT). The MOTR series, a key achievement in this
trend, adopts an end-to-end design to deeply integrate
object detection and tracking via a unified Transformer
framework. Through model iterations, the series has con-
tinuously optimized structural design, tracking accuracy,
and robustness, addressing limitations of earlier versions.
Early MOTR models introduced “tracking queries” to
propagate target identities via Transformer decoders,
eliminating explicit data association. However, they faced
challenges in balanced supervision between detection
and tracking. MOTRv2[13] improved detection by incor-
porating pretrained detector priors, though at the cost of
full end-to-end integrity. The latest MOTRV3 reestablish-
es end-to-end purity with strategies like Release-Fetch
Supervision (RFS) and Track Group Denoising (TGD),
achieving notable gains in accuracy (70.4% HOTA on
DanceTrack) and stability.

The MOTR series exemplifies Transformer’s potential in
MOT, demonstrating how unified spatio-temporal model-
ing via end-to-end frameworks can outperform traditional
pipeline methods. As a milestone in iterative innovation, it
not only advances tracking performance but also provides
a robust foundation for applications in autonomous driv-
ing and smart surveillance.

3.1 MOTR: Tracking as Detection

The network architecture of MOTR is built on Deform-
able DETR. This architecture uses a multi-scale feature
extractor and Deformable Attention module, effectively
alleviating the slow convergence and high computational
cost problems in the standard Transformer.
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Fig. 4 Architecture of MOTR

The most significant innovation of MOTR resides in its in-
troduction of the “tracking query” concept. These tracking
queries serve as learnable representation vectors encod-
ing the state of tracked targets from the previous frame,
encompassing spatial coordinates, appearance features,
and temporal dynamics. When fed into the Transformer
decoder of the current frame, they undergo cross-atten-
tion with multi-scale image features to predict the precise
positions and identities of corresponding targets. This
“tracking-by-attention” mechanism establishes an implic-
it association between consecutive frames, where target
trajectories are maintained through the iterative update of
query states rather than explicit similarity calculations or
motion model assumptions.

By integrating this design, MOTR achieves a unified
modeling framework for detection and tracking within the
Transformer architecture. Unlike traditional methods that
rely on separate modules for feature extraction, similarity
measurement, and Hungarian matching, MOTR elimi-
nates the need for explicit data association pipelines. This



not only streamlines the tracking process but also enables
global optimization of spatio-temporal features, as the
decoder can jointly model inter-frame dependencies and
intra-frame object relationships. The resulting end-to-end
architecture demonstrates enhanced robustness in complex
scenes with occlusions or rapid motion, marking a funda-
mental shift from modular tracking pipelines to holistic
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sequence modeling.

3.2 MOTRv2: Query Evolution

MOTRV2 [13] consists of two major components: a
high-performance object detector and an improved an-
chor-based MOTR tracker.

Input @t =1 Prediction @ t = 1

Fig. 5 Architecture of MOTRv2

This architecture realizes information interaction between
proposal queries and tracking queries through self-atten-
tion mechanisms, avoiding repeated detection and improv-
ing positioning accuracy. By integrating high-performance
object detectors such as YOLOX to generate proposals,
it provides detection priors (such as anchor positions and
size information) for MOTR, significantly alleviating the
joint learning conflict between detection and association
in the original MOTR and greatly improving detection ac-
curacy (DetA). The design of anchor-based tracking que-
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ries, combined with self-attention mechanisms for cross-
frame information interaction, enhances the stability of
trajectory association.

3.3 MOTRv3: Release-Fetch Supervision

MOTRV3 [14] primarily consists of a backbone network,
Transformer encoder-decoder, and three strategic modules
(RFS/PLD/TGD), maintaining an overall end-to-end char-
acteristic without requiring additional detection networks.
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Fig. 6 Overall framework of MOTRv3

Through Release-Fetch Supervision (RFS), during the ini-
tial 5 decoder layers of training, all ground-truth labels are
enforced to participate in the bipartite matching process
for both detection and tracking queries, ensuring that the
detection branch receives sufficient supervision (with the
proportion of detection-assigned labels increasing from
40% to nearly 100% in early training stages). As training

progresses, labels are gradually and automatically trans-
ferred to the association task in later layers, dynamically
balancing the supervision allocation between the two
tasks.

Pseudo Label Distillation (PLD) employs a pretrained
YOLOX detector to generate high-quality pseudo labels
(including hard samples like small or occluded objects)
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during the training phase. These pseudo labels are inte-
grated into the loss function with confidence-weighted
weighting (multiplying matched labels by their confidence
scores and suppressing unmatched ones with a 0.5 weight)
to enhance detection supervision without introducing any
inference-time dependency on external networks.

Track Group Denoising (TGD) improves association
stability by expanding a single group of tracking queries
into 4 independent groups and adding random noise to
the reference points of each group. Combined with atten-
tion masks that isolate inter-group information flow, this
strategy reduces trajectory fragmentation caused by query
initialization sensitivity, leading to a 58.7% reduction in
identity switches (IDS) on the DanceTrack dataset.

This pure end-to-end design completely eliminates the
need for additional detection networks or post-processing
steps such as NMS, achieving a balance between efficien-
cy (10.6 FPS on ResNet-50) and accuracy (70.4% HOTA
on DanceTrack), while providing a robust baseline for
future multi-object tracking research.

4. Comparison and Analysis of Experi-
mental Results

4.1 Datasets and Evaluation Metrics

Datasets:
DanceTrack: Contains 100 dance scene videos with simi-
lar target appearances and complex movements, focusing
on association performance evaluation.
MOT17: A classic multi-object tracking dataset with
crowded street scenes, focusing on detection and compre-
hensive performance evaluation.
BDD100K: A multi-class dataset in autonomous driving
scenarios, containing 8 object classes, 1,400 training se-
quences, and 200 validation sequences, with an average
sequence length of 40 seconds.
Evaluation Metrics:
HOTA (comprehensive metric):

DetA+ AssA— DetAx AssA

DetAx AssA

Measures the overall accuracy of detection and associ-
ation, decomposed into DetA (detection accuracy) and
AssA (association accuracy).
MOTA (multi-object tracking accuracy):Reflects the com-
prehensive errors of detection misses, false positives, and
identity switches.
IDF1 (identity retention rate): Evaluates identity consis-

Formula=

tency, where higher values indicate stronger trajectory
continuity.

IDS (number of identity switches): Measures the degree
of trajectory fragmentation.

4.2 Comparison Methods

Detection-based tracking methods:

ByteTrack [15] (SOTA detection-tracking method relying
on the YOLOX detector + post-processing)

OC-SORT [16] (improved version of SORT combining
motion models and appearance features)

End-to-end tracking methods:

MOTR (original end-to-end baseline based on Transform-
er)

MOTRvV2 (introducing pretrained detector-assisted detec-
tion, non-end-to-end)

MOTRv3 (proposed method, pure end-to-end + three op-
timization strategies)

4.3 Experimental Configurations

4.3.1 Baseline Configurations:

MOTR:

Backbone: ResNet-50 with Deformable DETR modifica-
tions.Training: 50 epochs on MOT17, 20 epochs on Dan-
ceTrack, learning rate 1e—4.

MOTRv2:

Detector: YOLOX-S with 640x640 input, pretrained on
COCO.Tracker: Anchor-based MOTR with 100 tracking
queries.

ByteTrack:

Detector: YOLOX-X, SORT-based association with IOU
threshold 0.3.Post-processing: NMS with threshold 0.6.

4.3.2 MOTRv3 Specifics

RFS Parameters:

First 5 decoder layers use free matching for all queries;
final layer uses locked matching for tracking queries.

PLD Configuration:

Pseudo labels generated by YOLOX-L (pretrained on
CrowdHuman + COCO), filtered at confidence > 0.1.Loss
weighting: Matched pseudo labels x confidence score, un-
matched x 0.2.

TGD Parameters:

4 tracking query groups, noise scale factor 0.2 (relative
to bounding box size).Attention masks to prevent cross-
group interaction during self-attention.
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Table 1 Comparison of results on the DanceTrack test set

Method Type HOTA(%) FPS
ByteTrack Detection+Tracking 63.1 25
OC-SORT Detection+Tracking 55.1 30
MOTR End-to-end 54.2 9.5
MOTRv2 Non-end-to-end 69.9 6.9
MOTRv3 End-to-end 70.4 10.6
Method MOTA(%) IDF1(%) IDS
ByteTrack 89.6 53.9 2196
OC-SORT 92.0 54.6 -
MOTR 79.7 51.5 2439
MOTRv2 91.9 71.7 1139
MOTRv3 92.9 72.3 1027

Key Observations:

MOTRv3’s DetA (83.8%) surpasses MOTRv2 (83.0%)
despite removing the external detector, validating the ef-
fectiveness of PLD.The 58.7% reduction in IDS compared

to MOTR indicates TGD’s success in stabilizing track.The
10.6 FPS speed is 54% faster than MOTRvV2, achieved by
eliminating post-processing overhead.

Table 2 Comparison of results on the MOT17 test set

Method HOTA(%) MOTA (%) IDF1(%) IDS

ByteTrack 63.1 80.3 713 2196

MOTR 57.8 73.4 68.6 2439

MOTRv2 62.0 78.6 75.0 1284

MOTRv3 60.2 75.9 72.4 2403

Notable Findings: Later, as tracking queries stabilize, labels are automatical-

MOTRV3’s AssA (58.7%) is slightly lower than MOTRv2
(60.6%) due to MOT17’s smaller training size, highlight-
ing the need for data augmentation in small datasets.

The 94 ms/frame runtime is 35% faster than MOTRvV2,
demonstrating efficiency gains from end-to-end optimiza-
tion.

4.5 Analysis and Discussion

As a new generation of pure end-to-end multi-object
tracking framework, MOTRV3 solves the detection-asso-
ciation conflict in end-to-end tracking through three inno-
vative strategies:

Release-Fetch Supervision (RFS) forces all labels to par-
ticipate in the matching of detection and tracking queries
in the early training stage, ensuring sufficient supervision
for the detection part (the proportion of detection labels
increases from 40% to nearly 100% in the early stage).

ly transferred to the association task, achieving dynamic
balance.

Pseudo Label Distillation (PLD) uses pretrained YOLOX
to generate diverse pseudo labels (such as hard sample
detection boxes) during the training phase. By weighting
losses with confidence scores to suppress noise, detection
accuracy is significantly improved (DetA reaches 83.8%
on DanceTrack, a 10.3% increase over MOTR).

Track Group Denoising (TGD) expands single-group
tracking queries into 4 groups and adds random noise.
Combined with attention masks to isolate inter-group
information, it reduces trajectory fragmentation (IDS
decreases from 2439 to 1027 on DanceTrack, a 58.7% re-
duction) and improves association stability (AssA increas-
es from 40.2% to 59.3%)).

Experimental results show that MOTRv3 surpasses the
non-end-to-end MOTRvV2 (69.9% HOTA) with 70.4%
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HOTA on the DanceTrack test set, achieves 92.9%
MOTA, and has an inference speed of 10.6 FPS (Res-
Net-50 backbone). When upgraded to ConvNeXt-Base,
its performance continues to improve (HOTA 71.2%, FPS
9.8). On the MOT17 test set, it achieves 60.2% HOTA,
72.4% IDF1, and only 2403 IDS, significantly outper-
forming the post-processing-dependent MOTRv2 (HOTA
drops to 57.6% after removing post-processing).

This study verifies that end-to-end architectures can
achieve high-performance tracking without external de-
tectors, providing a new paradigm for the multi-object
tracking field that balances efficiency and accuracy. The
strategic design ideas offer universal reference value for
solving multi-object conflicts in other end-to-end visual
tasks.

5. Existing Problems and Research
Prospects

5.1 Existing Problems

Transformer models’ fully connected attention mechanism
inherently carries high computational complexity, partic-
ularly in image and video tasks. Here, input features are
often high-dimensional and multi-scale, leading to signifi-
cantly greater demands for video memory and computing
resources during both training and inference compared to
traditional tracking methods. For instance, in multi-object
tracking (MOT) scenarios, processing high-resolution vid-
eo frames with dense target distributions can cause mem-
ory usage to surge, limiting deployability on edge devices
or real-time systems.

While tracking queries facilitate cross-frame information
transmission, practical applications reveal insufficient
model robustness in scenarios like long-term target occlu-
sion or frequent entry/exit of the frame. During prolonged
occlusions, tracking queries may lose valid feature corre-
spondence, leading to trajectory fragmentation or identity
switches. Similarly, abrupt target appearance/disappear-
ance challenges the model’s ability to dynamically initial-
ize or terminate tracks, highlighting the need for enhanced
temporal context modeling or memory mechanisms.

The MOT field currently lacks a unified evaluation stan-
dard, with disparities in datasets, preprocessing pipelines,
and evaluation metrics (e.g., MOTA, IDF1, HOTA) across
studies. These inconsistencies hinder horizontal reproduc-
ibility of experimental results and objective performance
comparisons. For example, varying definitions of “occlu-
sion” across datasets or differing handling of small targets
can skew metric interpretations, making it difficult to
draw definitive conclusions about method superiority. Es-

tablishing standardized evaluation protocols would foster
more rigorous scientific discourse and accelerate techno-
logical advancement.

5.2 Future Research Directions

To tackle the high computational complexity and deploy-
ment hurdles of current Transformer models, lightweight
architectural designs present viable solutions. Sparse at-
tention mechanisms, for instance, can reduce the quadratic
complexity of full self-attention by focusing on locally
relevant patches or key features, thereby cutting both
memory usage and inference time. Model compression
techniques such as knowledge distillation or parameter
quantization further optimize models for edge devices,
enabling real-time tracking in resource-constrained envi-
ronments. Meanwhile, efficient encoder structures—such
as hierarchical or factorized designs—can strike a balance
between feature richness and computational efficiency,
making Transformer-based MOT more practical for re-
al-world applications.

To enhance model generalization across diverse scenarios,
cross-domain training and meta-learning offer promis-
ing strategies. Cross-domain training involves exposing
models to data from varied environments (e.g., different
lighting, weather, or camera perspectives), forcing them
to learn invariant features that transcend specific contexts.
Meta-learning, on the other hand, equips models with
the ability to rapidly adapt to new scenarios by learning
“learning-to-learn” parameters, improving robustness in
unseen conditions like extreme occlusions or unconven-
tional target motions.

Integrating object tracking with high-level tasks such as
semantic understanding or behavior recognition can ele-
vate discriminative power in challenging scenarios. For
example, incorporating semantic labels (e.g., “vehicle,”
“pedestrian”) or predicting future motion patterns allows
the model to leverage contextual knowledge, reducing
misassociations caused by similar appearances or tempo-
rary occlusions. This multi-task learning framework not
only enhances tracking accuracy but also enriches the se-
mantic depth of output trajectories.

Addressing the scarcity of labeled data, semi-supervised
and self-supervised learning methods can mitigate reli-
ance on manual annotation. Semi-supervised approaches
use a small amount of labeled data alongside abundant
unlabeled data, while self-supervised learning creates pre-
text tasks (e.g., frame ordering, feature contrast) to extract
supervisory signals from unlabeled videos. These methods
improve training efficiency under low-resource condi-
tions, making MOT models more accessible in domains
where large-scale labeling is costly or impractical, such as



medical imaging or wildlife monitoring.

6. Conclusion

This paper systematically combs the multi-object tracking
methods based on Transformer, focusing on analyzing the
technological evolution process of the MOTR series from
the initial MOTR to MOTRv2 and MOTRv3. Through
key designs such as the introduction of tracking queries,
query evolution mechanisms, and RelD branches, this se-
ries of methods achieves deep integration of detection and
tracking tasks and demonstrates excellent performance on
multiple datasets.

The MOTR series demonstrates the powerful potential
of Transformer in multi-object tracking tasks. With the
optimization of model architecture, the improvement of
generalization ability, and the further innovation of learn-
ing methods, this direction is expected to continuously
promote the development and practical application of
multi-object tracking technology.

References

[1] Li Dazhi. Trajectory Planning and Tracking Control
of Autonomous Vehicles Considering Active Safety [D].
Changchun: Jilin University, 2023, pp. 11-20.

[2] VASWANI A, SHAZEER N, PARMAR N. Attention is all
you need[J]. Advances in neural information processing systems,
2017(30):6000-6010.

[3] WANG Z, ZHENG L, LIU Y. Towards real-time multi-
object tracking[C]/Proceedings of the European Conference on
Computer Vision. London:Springer, 2020.

[4] ZHANG Y, WANG C, WANG X. Fairmot:On the fairness
of detection and re-identification in multiple object tracking[J].
International Journal of Computer Vision, 2021, 129:3069-3087.
[5] BRAS G, LEAL-TAIX L. Learning a neural solver for
multiple object tracking[C]/Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. Long

Dean&Francis

JINGYU LI

Beach:CVF, 2019.

[6] MEINHARDT T, KIRILLOV A, LEAL-TAIXE
L.Trackformer:Multi-object tracking with transformers[C].
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, New Orleans:CVF, 2022.

[7] SUN P, CAO J, JIANG Y. Transtrack:Multiple object
tracking with transformer[J]. arXiv preprint arXiv:2012.15460,
2020.

[8] SUN P, CAO J, JIANG Y. Transtrack:Multiple object
tracking with transformer[J]. arXiv preprint arXiv:2012.15460,
2020.

[9] YUAN Xuesong.Reliable routing algorithms for UAVs
based on geographic location information[J].Journal of
Chongqing Technology and Business University(Natural Science
Edition),2021,38(1):50-56.

[10] CARION N,MASSA F,SYNNAEVE G. Endtoend object
detection with transformers[C]/Proceedings of the European
conference on computer vision.London:Springer, 2020.

[11] ZENG F,DONG B,ZHANG Y,et al. MOTR:End-to-
end multiple-object tracking with transformer[C]//European
Conference on Computer Vision,2022:659-675.

[12] CAI J, XU M,LI W,et al. MeMOT:Multi-object tracking with
memory[C]//IEEE/CVF Conference on Computer Vision and
Pattern Recognition,2022:8090-8100.

[13] Zhang Y, Wang T, Zhang X. MOTRv2: Bootstrapping End-
to-End Multi-Object Tracking by Pretrained Object Detectors[J].
arXiv preprint arXiv:2211.09791v2, 2023.

[14] Yu E, Wang T, Li Z, et al. MOTRv3: Release-Fetch
Supervision for End-to-End Multi-Object Tracking[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2024, 46(5): 1234-1246.

[15] Zhang, Y., Sun, P, Jiang, Y., Yu, D., Weng, F., Yuan, Z.,
Luo, P, Liu, W., Wang, X.: Bytetrack: Multi-object tracking by
associating every detection box. In: European Conference on
Computer Vision. pp. 1-21 (2022) 1,7, 9, 14

[16] Cao, J., Weng, X., Khirodkar, R., Pang, J., Kitani, K.:
Observation-centric sort: Rethinking sort for robust multi-object
tracking. arXiv preprint arXiv:2203.14360 (2022) 7, 9





