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TCN method development for SOC
prediction of Li-ion batteries

Abstract:

Zhiyu Chen Lithium battery state-of-charge (SOC) estimation is a core
function of battery management system, which directly
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China, 1014288392@gqq.com aging scenarios, temporal convolutional networks (TCNs)
have become a research hotspot in the field of SOC
estimation. This paper reviews the recent progress of TCN
methods: through the introduction of attention mechanism,
migration learning and hybrid architecture, it effectively
solves the challenges of data missing sensitivity and poor
cross-cell generalisation; combined with genetic algorithm,
grey wolf optimisation and other strategies, it further
optimises the network structure and hyperparameters.
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1. Introduction tion methods, and the main methods are classified
into ampere-time integration method, open-circuit
SOC (State of Charge) is the core technical indicator voltage method, Kalman filtering method, neural
of new energy vehicles, which directly determines  pework method, etc. Different estimation methods
vehicle performance, safety and user experience. As  pave different principles, which lead to a large gap
the “eyes” of the battery management system, SOC  petyeen the process and the result accuracy. The neu-
dynamically optimizes the charging and discharging  14] network method predicts SOC based on machine
strategies through real-time monitoring of the re-  jearing, which can deal with nonlinear relationships
maining battery charge, avoiding the damage to the  ,ng complex situations, and has significant effect on
battery life caused by overcharging or over-discharg-  {he estimation of battery SOC which is unpredictable,
ing, and at the same time accurately predicting the re- 44 the combination of it with deep learning can have
maining range in combination with the temperature,  gtrong adaptability and learning ability, which is suit-
driving conditions, and other data, so as to alleviate  aple for all kinds of batteries, and has been favoured
the mileage anxiety of the users. by domestic and foreign researchers and scholars.
Researchers and scholars at home and abroad have T}, commonly used deep learning methods for SOC
conducted a lot of research on battery SOC estima-  ogtimation are Recurrent Neural Network (RNN) and



Convolutional Neural Network (CNN). Long Short Term
Memory Network (LSTM), Gated Recurrent Unit (GRU)
are introduced to improve RNN. Time Convolutional
Network (TCN) is introduced to improve CNN.LSTM
solves the nonlinear problems of dynamic working con-
ditions and battery aging that are difficult to be dealt with
by traditional methods, and inputs the time series data
such as voltage, current, and temperature when estimating
the SOC, but the many parameters lead to long time-con-
suming training and difficulty in embedded deployment;
GRU simplifies the structure of LSTM and reduces the
cost of computation, with fewer parameters, quicker train-
ing, significantly fewer parameters, and Better real-time;
CNN and RNN combine to extract uncertain features of
multi-sensor data; TCN solves the problem of gradient
vanishing of traditional RNN and becomes a new choice
to deal with long sequences, improves the efficiency of
parallel computation, is suitable for embedded deploy-
ment, and effectively copes with the problem of long-peri-
od effects such as battery aging, and combines with other
optimisation algorithms to enable parameter tuning.
Chung et al. proposed a deep learning model based on
LSTM-RNN for lithium-ion battery state-of-charge es-
timation, which achieves high-precision SOC prediction
under dynamic temperature conditions. Duan et al. pro-
posed an improved gated recurrent unit network model
(GRU-ATL) for lithium-ion battery state-of-charge (SOC)
estimation, which solves the SOC estimation problem in
the voltage flat region and under noise interference. Song
et al. proposed a hybrid model (CNN-LSTM) combining
convolutional neural network (CNN) and long short-term
memory network (LSTM) for lithium-ion battery state-of-
charge (SOC) estimation, which can simultaneously mod-
el the spatio-temporal nonlinear dynamic characteristics
of the battery.

2. Relevant knowledge

A. Definition of SOC

SOC is used to represent the remaining available power
inside the battery and is the main parameter of the battery
management system. It is defined by the Advanced Bat-
tery Consortium of America as the ratio of the remaining
charge to the rated capacity of a battery at a specific dis-
charge multiplier, and is calculated by the formula shown
in:

SOC=%X100%=1— 0

rated rated

Where: QO indicates the remaining charge of the lith-

remain

ium battery, Ah; Q.. indicates the rated capacity of the
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lithium battery, Ah; O indicates the discharge of the lithi-
um battery, Ah.

When SOC=100%, it means that the lithium battery is in
a fully charged state; when SOC=0, it means that the lith-
ium battery is completely discharged; the range of SOC is
between 0 and 100%.

B. SOC evaluation indicators

The evaluation metrics for SOC are generally Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE).

1§,
MAE:;ZH |y = x|

1
RMSE = /;Z‘,;;(yi—x,.)2

Where: n is the number of samples; y, is the predicted

value of the ith sample; x; is the true value of the i th

sample.

MAE is calculated by Eq. The smaller the value of MAE,
the better the prediction performance of the model, and
when MAE is 0, it means that the prediction result is com-
pletely accurate. MAE is explanatory, easy to understand,
and has a strong anti-interference ability to the outliers in
the data.

RMSE is calculated as shown in Eq. RMSE Since the er-
ror of each sample is squared first, it makes the samples
with larger errors have a larger impact on the RMSE val-
ue, which is an advantage when focusing on large errors
C. TCN definition and calculation formula

Temporal Convolutional Network (TCN) is a temporal
modeling architecture based on one-dimensional causal
convolution, which consists of three main parts: causal
convolution, dilation convolution, and residual connec-
tion.

Causal convolution has the two characteristics of not
considering future information and the longer the infor-
mation is traced back in history, the more hidden layers
there are, so it can result in a huge convolution kernel and
a complex structure. In this regard, dilation convolution is
proposed, as shown in Fig. Injecting dilation factors into
the standard convolution as a way to increase the sensory
field.

Causal dilation convolution can be defined as follows:

(F*X)x, = 25, fix, (K —k)*d
Where F=(f,f,....fx) represents the filter,

X =(x,x,,...,x;) represents the input data and d is the

dilation factor.

The input to the residual module undergoes two layers of
convolution and nonlinear mapping, with WeightNorm
and Dropout also added to each layer to regularize the
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network to prevent gradient explosion and overfitting, and
the input uses an additional 1x1 convolution to adjust the
width of the residual tensor to ensure that the inputs and
outputs have the same shape.
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Figure 1. TCN

3. TCN and derivation methods

A. Basic TCN

Yahia et al. first proposed a temporal convolutional net-
work (TCN)-based state-of-charge (SOC) estimation
method for lithium-ion batteries, which effectively solves
the gradient problem of traditional recurrent neural
networks (RNNs) in temporal modeling and achieves
high-precision estimation of the SOC under the dynamic
operating conditions of the battery. The core structure of
the TCN consists of multiple layers of stacked expan-
sion-convolutional modules, each of which exponentially
expands the sensory field through the The core structure
of TCN consists of multiple layers of expanding convolu-
tional modules, each of which expands the sensory field
by exponentially expanding the expansion rate to capture

the long and short-term dependencies of different time
scales in the input signals, such as battery voltage, current,
and temperature, etc. The causal convolution ensures that
the prediction at the current moment relies on the histor-
ical data only to avoid the leakage of the future informa-
tion, while the residual module fuses the original inputs
and convolutional outputs through jump connections,
which strengthens the stability of the information transfer
and mitigates the gradient vanishing problem of the deep-
er network. .

The experimental results show that the model exhibits
high robustness under mixed driving cycles and wide tem-
perature range, with the MAE below 2.5% and the RMSE
below 3%, which is faster than the traditional LSTM/
GRU model in terms of training speed and higher parallel
computation efficiency, and does not need to rely on the
complex battery model or multi-model fusion strategy,
which verifies its application in the practical on-board bat-
tery management system (BMS) applications.

B. Integration of TCN with data processing models

1) TCN-LSTM-transfer learning

The main advantage of TCN is that it can flexibly regulate
the size of the receptive field as well as effectively man-
age the memory duration of the model. Moreover, TCN
requires less memory during training, especially for long
input sequences. This efficiency is attributed to its unique
inclusion of dilated causal convolution and residual mod-
els. Combining the advantages of TCN and LSTM can op-
timize the input parameters and reduce the training time.
Zhao et al. proposed a hybrid model TCN-LSTM com-
bining temporal convolutional network (TCN) and long-
short-term memory network (LSTM), which improves
on the lack of dynamic adaptation and the limited ability
of long-term time-dependence capture of the underlying
TCN in lithium battery SOC estimation. TCN-LSTM not
only retains the TCN’s ability to capture multiscale via
dilated causal convolutions The TCN-LSTM not only
retains the advantage of TCN in capturing multiscale
time-dependence through inflated causal convolution, but
also introduces LSTM’s ability to model complex time-de-
pendent dynamics in a refined way, by connecting the con-
volutional layers of TCN in series with the cyclic units of
LSTM to form a two-stage feature extraction mechanism,
as shown in Fig. The former extracts local and global
spatial-temporal features from the original signals such as
voltage, current, temperature, etc., through the hierarchi-
cal inflated convolution, while the latter strengthens the
time-dependence of the higher-order features of the output
of the TCN. The problem of insufficient sensitivity of a
single TCN to nonlinear recession patterns in long-time
memory modeling is solved.

The experimental results show that TCN-LSTM signifi-



cantly outperforms single TCN and other benchmark
models in a wide temperature range and under multiple
operating conditions, with the average RMSEs of SOC,
SOH, and RUL reduced to 1.1%, 0.8%, and 0.9%, respec-
tively, which is about 40-60% lower than that of the single
TCN, and the maximal error is always lower than 2.5%
in 90 cycle tests, which shows a stronger cross-cycle gen-
eralization capability. strong cross-cycle generalization
ability.
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Figure 2. TCN-LSTM-transfer learning
2) TCN-GRU-Transformer
Zhou et al. proposed a three-stage hybrid model
TCN-GRU-Transformer (TGT) combining temporal con-
volutional network (TCN), gated recurrent unit (GRU),
and Transformer, to address the poor robustness of miss-
ing data and insufficient modeling of global temporal
dependence of the base TCN for SOC estimation in the
scenario of missing battery data. Improvements were
made. By fusing local timing feature extraction, missing
data adaptive optimization, and global attention mecha-
nism, multilevel feature cooperative modeling of incom-
plete battery data is realized for the first time. The model
solves the problems of traditional TCN being sensitive to
successive missing and LSTM-like model’s hidden state
being susceptible to interruptions; while the top-level
Transformer module captures the effective information at
the far-end by using adaptive weight allocation through
the multi-head attention mechanism for the context break
caused by long-term data missing.
Experiments show that the stability of TGT’s estimation
of 4000 consecutive missing points is significantly bet-
ter than that of Longformer and other models under the
FUDS conditions of 10°C and 40°C, and its MAE fluctu-
ation range is controlled within +0.003. Moreover, the re-
sidual linkage and hierarchical feature transfer mechanism
enable the model to converge quickly within 50 training
cycles, which avoids the gradient dispersion problem
caused by the coupling of modules in TCN-LSTM. avoid-
ing the gradient dispersion problem caused by the lack of
module coupling in TCN-LSTM
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Figure 3. TCN-GRU-Transformer
3) TCRN
Wang et al. proposed a temporal convolutional recom-
bination network (TCRN) that combines a temporal
recombination module (TRM) with a non-normalized
architecture, which improves on the insufficient dynamic
recombination ability of the timing features and the limit-
ed adaptability of the normalized architecture of the basic
TCN for SOC estimation of lithium batteries. By elimi-
nating the normalization layer in the traditional TCN, the
TCRN avoids the destruction of the time-dependence of
the battery timing data by the normalization process, and
retains the dynamic fluctuation characteristics of the origi-
nal sequence, thus more accurately capturing the mutation
patterns of voltage, current, and other parameters. The
TRM module generates temporal recombination weights
through the self-attention mechanism to dynamically
strengthen the feature contributions of the key time steps,
and at the same time imposes a temporal constraint to en-
sure that the neighboring time-step weights are monotoni-
cally increasing, which effectively suppresses the output
oscillation problem of the original TCN due to the expan-
sion convolution.
Experiments show that the TCRN reduces the MAE by
23.2% and increases the parameters by only 2.8% com-
pared with the TCN in the SOC estimation of lithium-ion
batteries, and the MAE is controlled to be within 1.12%
and 2.68% in the prediction of the future SOC for the next
10 and 30 minutes, respectively, which is a reduction of
more than 30% compared with the error of the TC.
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Huang et al. proposed a hybrid model based on genetic
algorithm (GA) optimized TCN and fused with untrace-
able Kalman filtering (UKF), which addresses the stability
problem of the underlying TCN under noise interference.
In this study, a genetic algorithm is used to optimize the
input time window length, network depth and the number
of convolutional kernels of the TCN in a multi-objective
manner, and the hyper-parameter search is completed
within 20 generations by the selection-crossover-variation
operation, which reduces the tuning time by 67% com-
pared with the traditional trial-and-error method. The op-
timized TCN output is further state-space fused by UKEF,
and unbiased estimation of nonlinear observation equa-
tions is performed by using Sigma point transformation,
which effectively suppresses the SOC jump error caused
by current sampling noise.

The experimental data show that the MAE of GA-TCN-
UKEF is 0.227% under the UDDS condition at 0°C, which
is 65% lower than that of the base TCN, and the maximum
error is reduced from 5.203% to 2.776%.The introduction
of UKF reduces the standard deviation of the estimated
fluctuation of the model in the charging/discharging pla-
teau period of the battery by 0.12%, and especially in the
voltage slowing section of the low SOC interval, the Kal-
man gain of adaptive adjustment improves the smoothness
of the prediction curve by 38%.

2) CGOA-MAM-TCN

Wang proposes an improved TCN model (CGOA-MAM-
TCN) that combines the chaotic locust optimization algo-
rithm (CGOA) and the multi-head attention mechanism
(MAM) to optimize the base TCN for the insufficient
long-range dependence modeling and hyperparameter
sensitivity problems in the estimation of the SOC of lithi-

Figure 5. CGOA-MAM-TCN

3) PSO-TCN-Attention

Li et al. proposed a hybrid model PSO-TCN-Attention
combining particle swarm optimization algorithm (PSO),
temporal convolutional network (TCN) and attention
mechanism (Attention), which improves on the hyper-
parameter sensitivity of the base TCN with insufficient
attention to the key temporal features in the estimation of
SOC of lithium battery.

um batteries. The model compensates for the limitation of
traditional TCNs that rely only on dilation convolution to
extract local features by introducing a multi-head attention
mechanism (Fig.), which embeds multiple attention heads
in parallel after each TCN stacking layer to capture the
dynamic correlation weights among voltage, current, and
temperature sequences, respectively.

The experiments show that the RMSE of the CGOA-
MAM-TCN reaches 0.069% and 0.013% for the mixed
conditions at 10°C and 30°C, respectively, which is a
significant reduction of the error compared with the base
TCN model. Especially in the low-temperature test, the
introduced attention mechanism reduces the prediction
error of the voltage-sudden drop section by about 40%,
confirming the model’s ability to resolve the time-dynam-
ic features of the battery polarization effect.
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Figure 6. Model of attention mechanism.
Its core innovation lies in the global optimisation of the



network structure of the TCN through the PSO algorithm,
while embedding the attention mechanism to strengthen
the weight allocation of key time steps. Specifically, PSO
is used to automatically search for the key hyperparam-
eters of TCN with mean absolute error (MAE) as the fit-
ness function in the iterative process, which improves the
tuning efficiency by about 40%. On this basis, the intro-
duced attention mechanism improves the model’s feature
capture performance during the voltage plateau period in
the UDDS dynamic cycle by dynamically calculating the
time-step weights of the input sequences.

Experimental results show that the model has an RMSE of
less than 1% in multi-temperature tests from 0°C to 40°C,
with an RMSE of 0.41% for the LA92 condition at 25°C,
and the maximum error is controlled within 5.75%, which
is significantly optimized over the base TCN model. In
particular, the R? coefficient reaches 99.92% in the US06
condition at a high temperature of 40°C, which demon-
strates a stronger nonlinear fitting ability than the LSTM
model with the TCN model.
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Figure 7. Flowchart of the TCN-Attention
model for PSO optimization.

4) GWO-LSTM-TCN

Li et al. proposed a hybrid LSTM-TCN model (GWO-
LSTM-TCN) based on the Grey Wolf Optimization al-
gorithm, which improves on the problem of incomplete
spatio-temporal feature extraction by a traditional single
network for SOC estimation of lithium batteries. The
model achieves feature complementarity by connecting
the LSTM and TCN networks in series: the LSTM lay-
er captures the long time dependence of battery voltage
and current using its gating mechanism, while the TCN
extracts the voltage-current mutation features within the
local time window by inflated causal convolution. To
overcome the subjectivity of hyperparameter selection, the
grey wolf optimization algorithm is introduced to perform
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adaptive search on the number of neurons in the LSTM
hidden layer, the number of TCN output channels, and
the batch size, which shortens the optimization time by
mimicking the encircle-and-attack strategy of wolf pack
hunting..
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Figure 8. GWO-LSTM-TCN network
diagram
The experimental results show that the hybrid model has
an RMSE of 1.47% in the FUDS dynamic test at 25°C,
which reduces the error by 10% compared to the single
TCN model, and the timing memory property of LSTM
reduces the maximum error by 22% compared to the pure
TCN in the prediction of current transient fluctuations in

the low SOC interval (20%-50%).
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4. Conclusion

Temporal convolutional network opens up an innovative
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technical path for lithium battery SOC estimation through
causal convolutional structure and parallel computing
characteristics. It utilises inflationary convolution and
residual connection to achieve multi-scale feature ex-
traction, and combines attention mechanism, migration
learning and other methods to significantly improve the
model performance. The study confirms that the deep
fusion of TCN and physical model can break through the
accuracy limitation of traditional data-driven methods at
the late stage of battery aging and under extreme work-
ing conditions, while the dynamic structure optimisation
technique solves the real-time deployment problem of the
model in embedded devices.
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