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Abstract:
This article explores the strategy of combining group 
theory and programming methods to study and solve the 
problem of irregular Rubik’s Cube. Group theory, as an 
important branch of algebra, is a powerful tool for studying 
symmetry and structural transformations. In the study 
of Rubik’s Cube, group theory is widely used to analyze 
various transformations and their inherent mathematical 
properties. Irregular Rubik’s Cube, compared to traditional 
standard Rubik’s Cube, has a more complex structure and 
transformation mode, which requires us to consider more 
subgroups, quotient groups, and their nested relationships 
when applying group theory.

Keywords: Pyraminx, Group theory, python.

1. Introduction
The Pyramid Cube, also known as the Pyramid Tetra-
hedral Cube, is a highly challenging and entertaining 
3D puzzle toy. It breaks the conventional design of 
a cubic cube with six faces and adopts a tetrahedral 
(pyramid shaped) structure, with each face composed 
of triangles, and a total of four such faces connect-
ed to a central point. Players need to rearrange the 
scrambled color blocks by rotating the four sides of 
the pyramid cube, so that each side has a uniform 
and compliant color. Compared with the third-order 
Rubik’s Cube, the solution of the Pyramid Rubik’s 
Cube is based on strategies such as layer first method 
and angle first method. However, due to its special 
structure, the rotation rules and steps are different, 

requiring higher spatial imagination and logical rea-
soning ability.

2. Background

2.1 Structure
Structurally, the core of a pyramid cube is a fixed 
central axis, similar to the central block in other 
types of cubes, but because it is a tetrahedron, there 
is only one central point instead of multiple. Around 
this center point, four axes extend outward, with sev-
eral small pieces connected to each axis. These small 
pieces are interconnected through specific mecha-
nisms (such as a combination of grooves and protru-
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sions) and can rotate within a certain range, thus forming 
the movable part of the entire Rubik’s Cube. By rotating 
the small blocks on these axes, attempt to restore the col-
or blocks on each face to a uniform color state, where all 
small blocks on each face have the same color.

2.2 Moves
In mathematical language, the rotation of a pyramid cube 
can be accurately described by defining its faces, axes, 
and rotation operations. Firstly, we clarify that the Pyra-
mid Cube has four faces, each of which is an equilateral 
triangle, and assume that these faces are labeled as F re-
spectively F1, F2, F3, F4. Due to its tetrahedral shape, the 
Pyramid Cube has three independent axes of rotation that 
pass through the center point of the pyramid and connect 
the centers of two opposing faces.
We can define these three axes as A respectively A1 (Con-
nect F1 and F3). The center A2 (Connect F2 and F4). The 
center and a virtual axis A0 (perpendicular to the bottom, 
if we consider the bottom as F1 or any other surface, this 
axis does not exist physically, but is useful in mathemat-
ical description because it represents rotation around the 
center of the base surface).
Next, we define the rotation operation. For each axis Ai 
(i=0,1,2), we can define two types of rotations: clockwise 
(CW) and counterclockwise (CCW), each of which can 
specify the degree of rotation (but in Rubik’s Cube, we 
usually only care about rotations of 90 degrees, 180 de-
grees, or 270 degrees, as smaller rotations can be achieved 
through a combination of these basic rotations).

3. Methodology

3.1 Conventional rotation of Pyraminx
For example, if we want to describe an axis around A1, 
the operation of rotating 90 degrees clockwise can be rep-
resented as R1 (CW, 90 degrees). Similarly, around axis 
A2, turning counterclockwise 180 degrees can be repre-
sented as R2 (CCW, 180 degrees) [1].
However, it should be noted that due to the unique struc-
ture of the pyramid cube, not all rotations are independent. 
Especially, around A0, the rotation of the axis (i.e. the 
overall rotation of the base) does not physically change 
the state of the cube, as it only rearranges the observer’s 
perspective. Therefore, in mathematical descriptions, we 
often ignore this rotation or consider it equivalent to an 
identity operation.
Finally, the solution to a pyramid cube can be seen as a se-
quence of rotation operations that transform the cube from 
an initial state to a target state where all face colors match. 

For example, a solution may look like this: R1 (CW, 90 
degrees), R2 (CCW, 180 degrees), R1 (CW, 90 degrees)… 
until reaching the target state.

4. Modelling
Define the state space of the Pyromania’s Cube
The number of moves required to solve a tower of n discs 
is 2n-1, so for n=1,2,3...10 discs, you will need to perform 
1,3,7,15,31, 63, 127, 255, 511, or 1023 moves, without 
errors [2].
State representation: Each state can be represented by a 
three-dimensional color matrix (or a more efficient encod-
ing method, such as a combination of position permuta-
tion and color permutation).
—State set: All possible states form a state space, which is 
vast but finite for a Pyraminx’s Cube.
Define rotation operation
—Rotation type: Define six basic rotation operations cor-
responding to single-layer rotation of the six faces of the 
Pyraminx’s Cube (upper U, lower D, left L, right R, front F, 
rear B). Double-layer or full-layer rotation can be further 
defined, but these can typically be represented as a combi-
nation of single-layer rotations [3].
—Rotation function: Write a function for each rotation 
type that takes a Pyraminx’s Cube state as input and re-
turns the new state after applying the rotation.
Establish a transformation group
—Group element: Each rotation operation (or combina-
tion thereof) is an element of the group. Group elements 
can be composite, meaning multiple rotations can be ap-
plied continuously.
—Unit element: The operation that does not change the 
state of the Pyraminx’s Cube (i.e. does not perform any 
rotation) is the unit element of the group.
—Inverse element: Each rotation operation has an inverse 
operation, which rotates the cube back to its original state.
—Union law: The compound of rotation operations satis-
fies the union law, which means that the order of rotation 
does not affect the final result (although in practical op-
erations, some rotation orders may not be feasible due to 
physical limitations).
The properties and structure of groups
—Order: The order of a Pyraminx’s Cube group (i.e. the 
number of elements in the group) is equal to the number 
of possible Pyraminx’s Cube states, which is a huge num-
ber.
—Generative set: A Pyraminx’s Cube group can be gener-
ated from a small generative set, which typically includes 
six basic rotation operations (or fewer equivalent opera-
tions).
—Subgroup: A subgroup of a Pyraminx’s Cube group 
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can be defined, such as a group that only includes even 
step rotations (because any rotation twice will return to its 
original position).
Application and Implementation
—Algorithm: Design a Pyraminx’s Cube algorithm us-
ing the theory of Pyraminx’s Cube groups, such as the 
Kociemba algorithm, which utilizes some properties of 
groups to accelerate the search process.
—Software implementation: Implement the rotation func-
tions and group operations mentioned above in program-
ming languages such as Python and C++, as well as data 
structures for representing and manipulating Pyromania’s 
Cube states.
—Visualization: Develop a user interface that allows users 
to see real-time updates of the cube’s status and the effects 
of rotation operations.
Further optimization
—State compression: finding more effective ways to rep-
resent states to reduce memory usage and improve algo-
rithm efficiency.
—Heuristic search: Combining heuristic information to 
guide the search process and reduce the size of the search 
space.
—Parallel processing: Utilizing multi-core processors or 
distributed computing to accelerate the search and solve 
Pyromania’s Cube process.

5. Python Methods
Implementing a representation of a Rubik’s Cube’s state, 
rotation functions, and group operations in Python in-
volves defining a suitable data structure for the cube’s 

state and then writing functions to manipulate that state. 
Below is a simplified version focusing on a 2x2x2 Rubik’s 
Cube for brevity and clarity.
1. Data Structure for Cube State
We present the group Rubik(M) as a permutation group 
on the corners and side edges. This way of presenting the 
group follows where the standard Rubik’s cube was con-
sidered [1-3].
For a 2x2x2 cube, we can represent the state as a 3D array 
(or a list of lists of lists) where each inner list contains the 
colors of the stickers on that face, organized by layer and 
row. However, for simplicity and efficiency, we’ll use a 
flat list and some indexing logic to simulate the 3D struc-
ture.
2. Constants for Colors and Faces
Let’s define some constants to represent colors and faces 
for clarity.
1) COLORS = [‘W’, ‘R’, ‘G’, ‘B’, ‘Y’, ‘O’] # White, 
Red, Green, Blue, Yellow, Orange
2) FACES = [‘U’, ‘D’, ‘L’, ‘R’, ‘F’, ‘B’] # Up, Down, 
Left, Right, Front, Back
3) # For a 2x2x2 cube, we can flatten the 3D structure into 
a 1D list
4) # Each face has 4 stickers, ordered top-left, top-right, 
bottom-right, bottom-left
5) # Faces are ordered U, D, L, R, F, B
6) FLAT_CUBE_SIZE = len(FACES) * 4

3. Initial Cube State
Let’s define a function to create a solved 2x2x2 cube state.

1) Rotation Functions
Rotation functions can be implemented by swapping the 
relevant stickers in the flat list. For simplicity, we’ll only 
implement single face rotations (90 degrees clockwise).
Note: This rotation function is very simplified and only 
handles 90-degree clockwise rotations for the outer faces 
of a 2x2x2 cube. For a 3x3x3 or larger cube, or to handle 

counterclockwise rotations, additional logic would be 
needed.
2) Using the Functions
This code provides a basic framework for representing 
and manipulating a 2x2x2 Rubik’s Cube state in Python. 
Extending this to a 3x3x3 or larger cube would require a 
more complex data structure and rotation logic, possibly 
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involving.
3) Python in Pyramids Cube
To solve a “pyramid cube” might be a bit ambiguous as 
it’s not a standard term in mathematics or computer sci-
ence. However, I’ll assume you mean generating a pattern 
that resembles a pyramid when printed to the console, 
where each layer of the pyramid is represented by a dif-
ferent number of cubes (represented by, say, asterisks ‘*’) 
increasing downwards [4].
Here’s a simple Python program that demonstrates how 
to print such a pyramid pattern. This example will create 
a pyramid of height n, where each layer has an increasing 
number of asterisks (*) from 1 to n, aligned in the center 
of the console:
def print_pyramid(n):
# Loop through each layer of the pyramid for i in range(1, 
n + 1):
# Print leading spaces to center the asterisks
# This is a simple way to center, assuming a console with 
an even character width
# For a more precise centering, you might need to adjust 
based on the actual console width
print(‘ ‘ * (n - i), end=’’)
# Print the asterisks for the current layer print(‘*’ * (2 * i - 
1))
# Example usage
n = 5 # Adjust the height of the pyramid print_pyramid(n)
This code snippet defines a function print pyramid n_ ( )  
that takes a single
parameter n, which represents the height of the pyramid. It 
then iterates from 1 to n, printing the appropriate number 
of spaces to center the asterisks on each line, followed by 
an increasing number of asterisks ( * ) to form the pyramid 
shape.
Note: The calculation 2* 1i −  for the number of asterisks 
ensures that the pyramid has an odd number of asterisks 
on each layer, which helps maintain a balanced appear-
ance when centered. If you want the pyramid to have an 
even number of asterisks on the bottom layer, you’d need 
to adjust this calculation accordingly.
Also, keep in mind that the centering method used here 
(printing n i− spaces before the asterisks) is a simple ap-
proach that assumes your console or terminal window has 
a sufficient width to display the pyramid without wrap-
ping. For more precise centering, especially in narrower 
windows, you might need to dynamically calculate the 
required number of spaces based on the actual console 
width and the length of the longest line of asterisks.

6. Data
The data of the Pyraminx’s Cube group mainly comes 
from mathematical group theory research, especially the 
analysis of group structure for Pyraminx’s Cube transfor-
mations. These studies are typically based on the physical 
properties and operational rules of Pyraminx’s Cube, 
forming precise descriptions of all possible states and 
their transformations through mathematical abstraction 
and modeling. In addition, with the development of com-
puter technology, computer-aided proof and simulation 
have also provided important data sources for the study of 
Pyraminx’s Cube groups.

7. Discussion
1. The uniqueness of Pyraminx’s Cube groups as exam-
ples of group theory
The Pyraminx’s Cube group, as a concrete example of 
group theory, demonstrates the powerful power of group 
theory in solving practical problems. By defining the ba-
sic rotation of the Pyraminx’s Cube as the generator and 
proving that these rotations satisfy the four fundamental 
properties of the group, we construct a complete group 
structure to describe all possible states of the Pyraminx’s 
Cube and their transformation relationships. This method 
of combining abstract mathematical concepts with con-
crete physical objects not only makes group theory more 
vivid and concrete, but also promotes the application and 
development of group theory in a wider range of fields.
2. Analysis of the Structure and Properties of Pyraminx’s 
Cube Groups
In the paper, we conducted a detailed analysis of the struc-
ture and properties of Pyraminx’s Cube groups. By cal-
culating the order of the Pyraminx’s Cube group (i.e. the 
total number of states), we reveal the enormous number 
of states in the Pyraminx’s Cube, further emphasizing its 
representativeness as a complex system [5]. It also provid-
ed a mathematical basis for designing efficient Pyraminx’s 
Cube solutions.

8. Conclusion
In this article, we delve into the close connection between 
Pyraminx’s Cube and group theory, which not only en-
riches the application scope of mathematical theory but 
also provides a new perspective for Pyraminx’s Cube 
enthusiasts and researchers to understand the complexity 
and beauty of this classic puzzle toy.
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