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Abstract:
When the text is longer than the training sequence 
length, the streamingLLM can successfully improve 
the computational speed and guarantee a certain degree 
of accuracy. But this method is only suitable for short 
term memory questions and answers. Because the 
StreamingLLM doesn’t improve a computer’s Long-term 
memory ability. We tried to combine the reservoir sampling 
with streamingLLM. Since StreamingLLM, the reservoir 
sampling will randomly take samples from what were 
meant to be discarded. Through adding reservoir sampling, 
we find the results are more accurate and representative.

Keywords: streamingLLM, Reservoir Sampling, Large 
Language Models, KV-cache, tokens

1. Introduction
We introduce an attention mechanism that is based 
on the StreamingLLM framework. Taking the use of 
its code we melted into an idea of another attention 
mechanism called HyperAttention [1].  The founda-
tional principle of StreamingLLM is the concept of 
an attention sink. This means that by preserving the 
KV pairs of the first tokens, the performance of the 

attention mechanism largely recovers. This enhance-
ment occurs because of the high attention score these 
tokens get, although they are not as important as we 
would think of them. As a result, the StreamingLLM 
has demonstrated up to 22 times speedup compared 
to the sliding window method.
Our research team sought to further enhance this 
streaming processing technique, in terms of either 
boosting its accuracy or achieving additional speed-
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up. We explored the potential of integrating concepts from 
HyperAttention, a method described in a recent paper 
that achieved a linear-time sampling algorithm even with 
unbounded matrix entries. A critical component of their 
approach is causal masking. To specify this, authors of 
HyperAttention were looking for a sampling matrix with a 
limited number of rows to address the computational chal-
lenges. The mentioned sampling strategy was what we 
combined with the notion of attention sink from Stream-
ingLLM. Instead of immediately deleting the heavy 
entries in the KV-cache, as done in StreamingLLM, we 
implemented a function called the reservoir sampling into 
the original code.  As a result of this adjustment, a sample 
matrix that has a fixed size will be created. In addition, 
as new tokens arrive in the stream, the algorithm decides 
whether to include them in the sample matrix. Initially, 
for the first k items, they are directly added to the sample. 
However, for subsequent items, the reservoir sampling 
process ensures each item has an equal probability of 
being included.  The primary objective of integrating the 
reservoir sampling method is to manage memory and 
space usage. By applying this method, we aim to achieve 
constant usage of those. Moreover, processing a smaller 
yet representative sample matrix can substantially reduce 
computational requirements, potentially leading to a more 

efficient streaming model.
2.Background
StreamingLLM is a simple and efficient framework, which 
can deal with text of infinite length without fine-turning. 
StreamingLLM trains the large language models with a 
finite attention window [2]. It keeps the attention sink to-
kens’ KV (the four initial tokens) together with the sliding 
window’s KV to anchor the attention computation and sta-
bilize the model’s performance [3]. But why are the four 
initial tokens’ KV ‘so essential? The researchers found 
that the model consistently focuses on the initial tokens. It 
means that deleting these initial tokens’ KV will remove a 
large portion of the denominator in the SoftMax function 
in the attention calculation. It is evident that the puzzle 
increases when the text length exceeds the cache size, led 
by the exclusion of initial tokens.

3. Code
To improve the efficiency and maintain the stability of the 
LLMs [4], the streaming large language models set up a 
limited attention window to train the LLMs. Because the 
memory space is limited, the code only reserves the four 
initial tokens (the start_size in code) and the recent tokens.

Figure1. The detailed code about initial tokens and recent codes.
As shown in Figure1, if the current sequence length plus 
the number of new elements is greater than the cache 
size(self.cache_size), the code will delete some elements 
and make room for the new tokens. The purpose of this 

method is to ensure that the cache does not exceed a 
predetermined size, while preserving as many important 
tokens’ KV as possible (the start tokens and the recent to-
kens). This is an effective strategy for managing memory 
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when working with long sequences of data, especially in 
decoding or generation tasks where the model needs to 

access recent context information.

Figure 2. The reservoir_sampling code.
However, we changed this method of removing interme-
diate data indiscriminately. As shown in figure2, we select 
some tokens from what were supposed to be deleted by 
the reservoir_sampling algorithm[5], which is used to 
draw a fixed number of samples uniformly and randomly 
from a larger dataset without the need to store the entire 
dataset. When the sample size(self.sample_size) is less 

than the number of candidate indexes, the code will re-
serve the initial tokens and the recent tokens firstly. Then, 
it will randomly select n(n=sample_size-start_size-recent_
size) tokens from the remaining sequence. As a result, the 
attention sink isn’t just the initial four tokens’ KV and the 
recent tokens’ KV. It also includes the extra random sam-
ple in the middle sequence.

Figure 3. The combine between start_slices, sample_slices and recent slices.
As shown in figure3, we use the sample_indices to gener-
ate the sample slices. Next, we combine the start_slices, 
sample_slices and recent slices by the torch.cat. The key 
to this method is that each time a new token is added, the 
code will carry out a reservoir_sampling algorithm [6], 
instead of simply discarding all the in-between tokens. 
This helps reduce memory usage when working with long 
sequences of data, while preserving the information that is 
most important to the task at hand.

4. Methodology of reservoir sampling 
implementation
Through reading and discussion, we decided that our basic 
idea is to combine the ideas of HyperAttetion into Stream-
ingLLMs and our codes are based on the codes of the 
paper Efficient Streaming Language Models with Atten-
tion Sinks as the basic codes [7, 8]. To be more specific, 
to keep the kv-cache at a limited size, the original codes 
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keep the first few starting tokens and most recent tokens 
whereas the middle ones will be evicted. So instead of 

evicting all the tokens in the middle, we add a space for 
storing a random sample of the middle ones.

Figure 4. Example of KV cache changing.
In this simple example shown in Figure 4, start_size, sam-
ple_size and recent_size is both set to 2. By adding up the 
three sizes, the limitation of the size of the kv-cache is 6. 
When the size of the cache is smaller than the limitation 
size, all tokens will be kept. When the cache size gets over 
the limitation 6, two of the “middle part”, will be random-
ly sampled (not common completely random sampling, 
will be explained in the next paragraph), and tokens that 
are not sampled will be evicted. So the calculation will be 
based on the 6 ones that are kept, two attention sinks, two 
sampled tokens, and two recents tokens. Since we cannot 
get the evicted tokens back and the total size of the stream 
is unknown, we use reservoir sampling to make sure that 
every token has the same probability to be sampled. To 
do the reservoir sampling [9], we introduce another vari-
able total_num(total number of tokens that have come 
in). Starting from the kv-cache reaching the limitation 
size, each token, which leaves the “recent tokens” part 
and becomes a new member of the “middle part”, has a 
probability p to evict and replace a random old sample, 
and a probability 1-p to evict itself. In the situation that 
it replaces an old sample, each old sample has an equal 
probability q to be replaced.

p = …
total num start size recent size_ _ _− −

sample size_ (1)

q = …
sample size

1
_

(2)

For example, in the step “generating token 6” in Figure 
4, token 4 leaves the “recent tokens”, so it gets a p=2/(7-
2-2)=2/3 to be kept. Here we choose to let it be kept, so 
both token 2 and token 3 have a probability 1/2 to be re-
placed by token 4. Here we choose token 2 to be replaced 
by token 4. In the next step “generating token 7”, token 5 
leaves the “recent tokens”, so it gets a p=2/(8-2-2)=1/2 to 
be kept. Here we choose the opposite situation which has 
probability 1-p=1-1/2=1/2 that it evicts itself, so token 3 

and token 4 are kept. In the next step “generating token 8”, 
token 6 is kept with the probability p=2/5, so both token 3 
and token 4 have a probability 1/2 to be replaced by token 
6 and here token 3 is replaced. As new tokens are coming 
in, this process will be repeated and the size of the kv-
cache will always be the same.

5. Problems we met and relevant solu-
tions
During our scientific research, researchers need to com-
plete the task according to the code of the algorithm in the 
paper: First, researchers need to reproduce all the code 
in the paper and run it successfully. After understanding 
the code, researchers need to rewrite the code to add the 
function of Hyper Attention in streaming-LLM [10]. 
However, throughout the time of reading and writing 
the code, the team encountered various problems. There 
are 5 main problems. The first main problem was that 
when researchers tried to reproduce the code in pycharm, 
researchers could not find a package called triton. This 
package improves the speed of model reasoning and train-
ing by providing a high-level programming language and 
compilation tool chain that enables developers to write 
efficient GPU cores. When researchers looked up the rea-
son on Google, researchers found that triton only supports 
linux operating systems, not windows. Then researchers 
downloaded the compiled package and installed it to run 
locally, but python still reported some compilation errors 
that could not be corrected. The second major issue con-
cerns some file import issues on Google Colab. The au-
thors of the code have written many separate code files to 
assist in running hyper-attention or to implement some of 
the unique methods hyper-attention has. Therefore, when 
running the code file that implements hyper-attention, 
researchers need to import all the files related to the code, 
otherwise hyper-attention will not run. But when research-
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ers run this code in Google Colab, errors always occur. 
The third main problem is the version problem of some 
packages. Some of the third party packages that were 
downloaded were too old or too new to match our code, 
making the overall error not work. There are also some 
third-party package versions that are not available online. 
The fourth major problem is SSL errors. When research-
ers need to connect to some model site to download the 
pre-trained model to implement the code, researchers need 
to turn on the VPN, otherwise researchers cannot do any-
thing on Google. The main reason is that firewalls in some 
countries or regions block VPN traffic, which can cause 
SSL connections to fail. The firewall may detect VPN traf-
fic and actively block it, making it impossible to establish 
a secure SSL connection. At this point, researchers were 
in a dilemma: whether to turn on the VPN or not? The last 
major issue is about the model itself. Some models con-
tain so much data that downloading them can take a lot of 
time. There are also models whose types do not match the 
functionality of our code, and there are even models that 
are not open to the public.
There are some relevant solutions that can solve these 
problems. For the first question, researchers found that 
codes can run on Google Colab because Colab comes 
with several third-party packages necessary for the ma-
chine learning space, including triton. For the second 
question, researchers saved the unique file code to Google 
Cloud Drive first, so the path of the file code is known. 
Then researchers imported the os package and wrote some 
methods to modify the current path of the file code so that 

python could find and use the file code to run hyper-atten-
tion properly. As for the third question, our team invited a 
teaching assistant to help us solve the problem: download 
some of the larger version related and compatible packag-
es, and those packages generally have the same effect and 
functionality. For the fourth problem researchers wrote a 
string of code to solve it: researchers set the URL and port 
of the HTTP and HTTPs proxy servers. In this way, we 
can download public models on some websites without 
VPN. For the last question, we found that there are still 
many models available on the website, and what we can 
do is not to rewrite these existing mature models, because 
it is not practical and difficult, so we choose to try one by 
one until we find a suitable model. Fortunately, there is a 
suitable one and the code reported no errors and returned 
a respectable result.

6. Results and discussion:
After overcoming the aforementioned obstacles, we suc-
cessfully ran the new program on a local PC instead of 
Google Colab. The primary issue with Google Colab was 
that the server would crash once the memory was used up. 
This problem was mitigated by using a local PC. Initial-
ly, the model ran on the CPU, which proved inefficient. 
Eventually, as shown in figure5, we add some parameters 
and additional codes to utilize the GPU, this significantly 
reduces training times and enables the processing of larger 
datasets.

Figure 5. The result of running the code.
It is noteworthy that due to the limited configuration 
of our PC—such as the speed of the hard disk, limited 
frequency and size of memory, and bottlenecks in GPU 
and CPU—we were unable to conduct some in-depth 

experiments on performance and processing speed. How-
ever, by adjusting the preliminary parameters, start_size, 
recent_size, and sample_size, we were able to control the 
resource usage, processing speed, and the final relevance 
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of the results. We found that a larger start_size provides 
a more representative initial sample, which can be bene-
ficial for establishing a baseline or for certain statistical 
analyses, albeit at the cost of slower start-up times. In-
creasing the recent_size can lead to more efficient pro-
cessing of data in larger batches, potentially speeding up 
the training or inference process, but it may also require 
more memory and computational power. Utilizing a larger 
sample_size improves the reliability and robustness of the 
model’s performance by reducing variance and providing 
a more accurate response. For specific tasks such as writ-
ing and reasoning, adjusting the sample_size significantly 
improved the performance (accuracy) of the answers com-
pared to the original streaming algorithm.
7.Conclusion
The StreamingLLM is a very effective method to deal 
with the long text in a short conversation. However, it 
can’t keep the accuracy when it faces the task that demand 
long-term memory and a great deal of data dependency. 
As a result, we add the reservoir sampling in the whole 
process to improve its accuracy. Then the computer will 
find more relative data to calculate the result. Through the 
experiment, we find the model’s efficiency doesn’t decline 
and the accuracy has improved.
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