
ISSN 2959-6157

Dean&Francis

247

Abstract:
When the text is longer than the training sequence
length, the streamingLLM can successfully improve
the computational speed and guarantee a certain degree
of accuracy. But this method is only suitable for short
term memory questions and answers. Because the
StreamingLLM doesn’t improve a computer’s Long-term
memory ability. We tried to combine the reservoir sampling
with streamingLLM. Since StreamingLLM, the reservoir
sampling will randomly take samples from what were
meant to be discarded. Through adding reservoir sampling,
we find the results are more accurate and representative.

Keywords: streamingLLM, Reservoir Sampling, Large
Language Models, KV-cache, tokens

1. Introduction
We introduce an attention mechanism that is based
on the StreamingLLM framework. Taking the use of
its code we melted into an idea of another attention
mechanism called HyperAttention [1]. The founda-
tional principle of StreamingLLM is the concept of
an attention sink. This means that by preserving the
KV pairs of the first tokens, the performance of the

attention mechanism largely recovers. This enhance-
ment occurs because of the high attention score these
tokens get, although they are not as important as we
would think of them. As a result, the StreamingLLM
has demonstrated up to 22 times speedup compared
to the sliding window method.
Our research team sought to further enhance this
streaming processing technique, in terms of either
boosting its accuracy or achieving additional speed-

An Experiment of Implementing Reservoir
Sampling to StreamingLLM

Jiyang Pan1*+,

Jiayi Weng2+,

Yansen Huang3+,

Patrick Pan4+,

Qianbiao Zhao5+

1Department of Information
systems and management, Najing
Audit University, Wuxi, China,
201743319@qq.com,
2Fazekas Mihaly Secondary School
of Budapest, Budapest, Hungary,

jiayiweng10@gmail.com,
3Guangdong Experimental
High School International
Department, Guangzhou, China,

jasonhuang2007@139.com,
4 Suzhou Fenghua School, Suzhou,
China, patrickpym@163.com,
5Guangdong Country Garden
School, Foshan, China,

qianbiaozhao92@gmail.com

1

Dean&Francis

248

ISSN 2959-6157

up. We explored the potential of integrating concepts from
HyperAttention, a method described in a recent paper
that achieved a linear-time sampling algorithm even with
unbounded matrix entries. A critical component of their
approach is causal masking. To specify this, authors of
HyperAttention were looking for a sampling matrix with a
limited number of rows to address the computational chal-
lenges. The mentioned sampling strategy was what we
combined with the notion of attention sink from Stream-
ingLLM. Instead of immediately deleting the heavy
entries in the KV-cache, as done in StreamingLLM, we
implemented a function called the reservoir sampling into
the original code. As a result of this adjustment, a sample
matrix that has a fixed size will be created. In addition,
as new tokens arrive in the stream, the algorithm decides
whether to include them in the sample matrix. Initially,
for the first k items, they are directly added to the sample.
However, for subsequent items, the reservoir sampling
process ensures each item has an equal probability of
being included. The primary objective of integrating the
reservoir sampling method is to manage memory and
space usage. By applying this method, we aim to achieve
constant usage of those. Moreover, processing a smaller
yet representative sample matrix can substantially reduce
computational requirements, potentially leading to a more

efficient streaming model.
2.Background
StreamingLLM is a simple and efficient framework, which
can deal with text of infinite length without fine-turning.
StreamingLLM trains the large language models with a
finite attention window [2]. It keeps the attention sink to-
kens’ KV (the four initial tokens) together with the sliding
window’s KV to anchor the attention computation and sta-
bilize the model’s performance [3]. But why are the four
initial tokens’ KV ‘so essential? The researchers found
that the model consistently focuses on the initial tokens. It
means that deleting these initial tokens’ KV will remove a
large portion of the denominator in the SoftMax function
in the attention calculation. It is evident that the puzzle
increases when the text length exceeds the cache size, led
by the exclusion of initial tokens.

3. Code
To improve the efficiency and maintain the stability of the
LLMs [4], the streaming large language models set up a
limited attention window to train the LLMs. Because the
memory space is limited, the code only reserves the four
initial tokens (the start_size in code) and the recent tokens.

Figure1. The detailed code about initial tokens and recent codes.
As shown in Figure1, if the current sequence length plus
the number of new elements is greater than the cache
size(self.cache_size), the code will delete some elements
and make room for the new tokens. The purpose of this

method is to ensure that the cache does not exceed a
predetermined size, while preserving as many important
tokens’ KV as possible (the start tokens and the recent to-
kens). This is an effective strategy for managing memory

2

Dean&Francis

249

Jiyang Pan, Jiayi Weng, Yansen Huang, Patrick Pan, Qianbiao Zhao

when working with long sequences of data, especially in
decoding or generation tasks where the model needs to

access recent context information.

Figure 2. The reservoir_sampling code.
However, we changed this method of removing interme-
diate data indiscriminately. As shown in figure2, we select
some tokens from what were supposed to be deleted by
the reservoir_sampling algorithm[5], which is used to
draw a fixed number of samples uniformly and randomly
from a larger dataset without the need to store the entire
dataset. When the sample size(self.sample_size) is less

than the number of candidate indexes, the code will re-
serve the initial tokens and the recent tokens firstly. Then,
it will randomly select n(n=sample_size-start_size-recent_
size) tokens from the remaining sequence. As a result, the
attention sink isn’t just the initial four tokens’ KV and the
recent tokens’ KV. It also includes the extra random sam-
ple in the middle sequence.

Figure 3. The combine between start_slices, sample_slices and recent slices.
As shown in figure3, we use the sample_indices to gener-
ate the sample slices. Next, we combine the start_slices,
sample_slices and recent slices by the torch.cat. The key
to this method is that each time a new token is added, the
code will carry out a reservoir_sampling algorithm [6],
instead of simply discarding all the in-between tokens.
This helps reduce memory usage when working with long
sequences of data, while preserving the information that is
most important to the task at hand.

4. Methodology of reservoir sampling
implementation
Through reading and discussion, we decided that our basic
idea is to combine the ideas of HyperAttetion into Stream-
ingLLMs and our codes are based on the codes of the
paper Efficient Streaming Language Models with Atten-
tion Sinks as the basic codes [7, 8]. To be more specific,
to keep the kv-cache at a limited size, the original codes

3

Dean&Francis

250

ISSN 2959-6157

keep the first few starting tokens and most recent tokens
whereas the middle ones will be evicted. So instead of

evicting all the tokens in the middle, we add a space for
storing a random sample of the middle ones.

Figure 4. Example of KV cache changing.
In this simple example shown in Figure 4, start_size, sam-
ple_size and recent_size is both set to 2. By adding up the
three sizes, the limitation of the size of the kv-cache is 6.
When the size of the cache is smaller than the limitation
size, all tokens will be kept. When the cache size gets over
the limitation 6, two of the “middle part”, will be random-
ly sampled (not common completely random sampling,
will be explained in the next paragraph), and tokens that
are not sampled will be evicted. So the calculation will be
based on the 6 ones that are kept, two attention sinks, two
sampled tokens, and two recents tokens. Since we cannot
get the evicted tokens back and the total size of the stream
is unknown, we use reservoir sampling to make sure that
every token has the same probability to be sampled. To
do the reservoir sampling [9], we introduce another vari-
able total_num(total number of tokens that have come
in). Starting from the kv-cache reaching the limitation
size, each token, which leaves the “recent tokens” part
and becomes a new member of the “middle part”, has a
probability p to evict and replace a random old sample,
and a probability 1-p to evict itself. In the situation that
it replaces an old sample, each old sample has an equal
probability q to be replaced.

p = …
total num start size recent size_ _ _− −

sample size_ (1)

q = …
sample size

1
_

(2)

For example, in the step “generating token 6” in Figure
4, token 4 leaves the “recent tokens”, so it gets a p=2/(7-
2-2)=2/3 to be kept. Here we choose to let it be kept, so
both token 2 and token 3 have a probability 1/2 to be re-
placed by token 4. Here we choose token 2 to be replaced
by token 4. In the next step “generating token 7”, token 5
leaves the “recent tokens”, so it gets a p=2/(8-2-2)=1/2 to
be kept. Here we choose the opposite situation which has
probability 1-p=1-1/2=1/2 that it evicts itself, so token 3

and token 4 are kept. In the next step “generating token 8”,
token 6 is kept with the probability p=2/5, so both token 3
and token 4 have a probability 1/2 to be replaced by token
6 and here token 3 is replaced. As new tokens are coming
in, this process will be repeated and the size of the kv-
cache will always be the same.

5. Problems we met and relevant solu-
tions
During our scientific research, researchers need to com-
plete the task according to the code of the algorithm in the
paper: First, researchers need to reproduce all the code
in the paper and run it successfully. After understanding
the code, researchers need to rewrite the code to add the
function of Hyper Attention in streaming-LLM [10].
However, throughout the time of reading and writing
the code, the team encountered various problems. There
are 5 main problems. The first main problem was that
when researchers tried to reproduce the code in pycharm,
researchers could not find a package called triton. This
package improves the speed of model reasoning and train-
ing by providing a high-level programming language and
compilation tool chain that enables developers to write
efficient GPU cores. When researchers looked up the rea-
son on Google, researchers found that triton only supports
linux operating systems, not windows. Then researchers
downloaded the compiled package and installed it to run
locally, but python still reported some compilation errors
that could not be corrected. The second major issue con-
cerns some file import issues on Google Colab. The au-
thors of the code have written many separate code files to
assist in running hyper-attention or to implement some of
the unique methods hyper-attention has. Therefore, when
running the code file that implements hyper-attention,
researchers need to import all the files related to the code,
otherwise hyper-attention will not run. But when research-

4

Dean&Francis

251

Jiyang Pan, Jiayi Weng, Yansen Huang, Patrick Pan, Qianbiao Zhao

ers run this code in Google Colab, errors always occur.
The third main problem is the version problem of some
packages. Some of the third party packages that were
downloaded were too old or too new to match our code,
making the overall error not work. There are also some
third-party package versions that are not available online.
The fourth major problem is SSL errors. When research-
ers need to connect to some model site to download the
pre-trained model to implement the code, researchers need
to turn on the VPN, otherwise researchers cannot do any-
thing on Google. The main reason is that firewalls in some
countries or regions block VPN traffic, which can cause
SSL connections to fail. The firewall may detect VPN traf-
fic and actively block it, making it impossible to establish
a secure SSL connection. At this point, researchers were
in a dilemma: whether to turn on the VPN or not? The last
major issue is about the model itself. Some models con-
tain so much data that downloading them can take a lot of
time. There are also models whose types do not match the
functionality of our code, and there are even models that
are not open to the public.
There are some relevant solutions that can solve these
problems. For the first question, researchers found that
codes can run on Google Colab because Colab comes
with several third-party packages necessary for the ma-
chine learning space, including triton. For the second
question, researchers saved the unique file code to Google
Cloud Drive first, so the path of the file code is known.
Then researchers imported the os package and wrote some
methods to modify the current path of the file code so that

python could find and use the file code to run hyper-atten-
tion properly. As for the third question, our team invited a
teaching assistant to help us solve the problem: download
some of the larger version related and compatible packag-
es, and those packages generally have the same effect and
functionality. For the fourth problem researchers wrote a
string of code to solve it: researchers set the URL and port
of the HTTP and HTTPs proxy servers. In this way, we
can download public models on some websites without
VPN. For the last question, we found that there are still
many models available on the website, and what we can
do is not to rewrite these existing mature models, because
it is not practical and difficult, so we choose to try one by
one until we find a suitable model. Fortunately, there is a
suitable one and the code reported no errors and returned
a respectable result.

6. Results and discussion:
After overcoming the aforementioned obstacles, we suc-
cessfully ran the new program on a local PC instead of
Google Colab. The primary issue with Google Colab was
that the server would crash once the memory was used up.
This problem was mitigated by using a local PC. Initial-
ly, the model ran on the CPU, which proved inefficient.
Eventually, as shown in figure5, we add some parameters
and additional codes to utilize the GPU, this significantly
reduces training times and enables the processing of larger
datasets.

Figure 5. The result of running the code.
It is noteworthy that due to the limited configuration
of our PC—such as the speed of the hard disk, limited
frequency and size of memory, and bottlenecks in GPU
and CPU—we were unable to conduct some in-depth

experiments on performance and processing speed. How-
ever, by adjusting the preliminary parameters, start_size,
recent_size, and sample_size, we were able to control the
resource usage, processing speed, and the final relevance

5

Dean&Francis

252

ISSN 2959-6157

of the results. We found that a larger start_size provides
a more representative initial sample, which can be bene-
ficial for establishing a baseline or for certain statistical
analyses, albeit at the cost of slower start-up times. In-
creasing the recent_size can lead to more efficient pro-
cessing of data in larger batches, potentially speeding up
the training or inference process, but it may also require
more memory and computational power. Utilizing a larger
sample_size improves the reliability and robustness of the
model’s performance by reducing variance and providing
a more accurate response. For specific tasks such as writ-
ing and reasoning, adjusting the sample_size significantly
improved the performance (accuracy) of the answers com-
pared to the original streaming algorithm.
7.Conclusion
The StreamingLLM is a very effective method to deal
with the long text in a short conversation. However, it
can’t keep the accuracy when it faces the task that demand
long-term memory and a great deal of data dependency.
As a result, we add the reservoir sampling in the whole
process to improve its accuracy. Then the computer will
find more relative data to calculate the result. Through the
experiment, we find the model’s efficiency doesn’t decline
and the accuracy has improved.

References
[1] Praneeth Kacham, Vahab Mirrokni, Peilin Zhong, (2024,
Mar17). PolySketchFormer: Fast Transformers via Sketching
Polynomial Kernels, arXiv:2310.01655v3 [cs.LG]
[2] Ali Jamali, Swalpa Kumar Roy, Avik Bhattacharya, Pedram
Ghamisi, 2023, Local Window Attention Transformer for
Polarimetric SAR Image Classification, IEEE Geoscience and
Remote Sensing Letters, DOI: 10.1109/LGRS.2023.3239263

[3] Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant
Nair, Ilya Soloveychik, Purushotham Kamath, 2024, Keyformer:
KV Cache reduction through key tokens selection for Efficient
Generative Inference, Proceedings of Machine Learning and
Systems 6(MLSys2024) Conference
[4] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya,Trevor Cai, Eliza Rutherford, Diego de Las
Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark,
Tom Hennigan, Eric Noland, Katie Millican, George van den
Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, Laurent
Sifre, 2022, Training Compute-Optimal Large Language Models,
arXiv: 2203.15556 [cs.CL]
[5] Richard Startin, 2020, Reservoir Sampling, Reservoir
Sampling | Richard Startin’s Blog
[6]Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura,
David P. Woodruf, 2019, Weighted Reservoir Sampling from
Distributed Streams, Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems,
Pages 218 - 235
[7] Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D. P., & Zandieh, A. (2023, October 9). HyperAttention: Long-
context attention in Near-Linear time. arXiv.org. https://arxiv.
org/abs/2310.05869
[8] Xiao, G., Tian, Y., Chen, B., Han, S., & Lewis, M. (2023,
September 29). Efficient Streaming Language Models with
Attention Sinks. arXiv.org. https://arxiv.org/abs/2309.17453
[9] Mohammed Al-Kateb, Byung Suk Lee, X. Sean Wang, 2007,
Adaptive-Size Reservoir Sampling over Data Streams, 19th
International Conference on Scientific and Statistical Database
Management (SSDBM 2007)
[10] Jagbir Kaur, 2023, STREAMING DATA ANALYTICS:
CHALLENGES AND OPPORTUNITIES, International Journal
of Applied Engineering & Technology, ISSN: 2633-4828

6

