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Abstract:
This paper discusses the non-existence of an algorithm 
Q  always deciding whether a constructive compact 
topological space is simply connected or not, that is 
whether its fundamental group is trivial or not. We 
construct a program R  that generates compact topological 
spaces, then we use R  and Q  to get an extension of an 
unextendible function to get the contradiction and finish 
the proof.
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1. Introduction
Topology, with its rich history and profound impact on 
mathematics and beyond, has evolved significantly since 
its inception in the late 19th century. While classical topol-
ogy often relies on non-constructive proofs that establish 
the existence of certain structures without specifying how 
to construct them, the field of constructive topology has 
emerged to address this gap. This discipline emphasizes 
algorithmic and computational methods to explicitly build 
topological objects, offering a bridge between theoretical 
results and practical applications.
The primary work of constructive mathematics was 
done by Alan Turing [1,2]. After he gave the definition 
of computable numbers, constructive mathematics was 
developed by two different schools - Bishop and Bridges 
in the USA, and the others are Markov [3,4]and Shanin 
from Russia [5], Bishop and Bridges [6]. The difference 
between these two schools is that followers of Bishop and 
Bridges’ Constructive Analysis do not allow themselves to 
use Markov’s principle in their mathematics. And in this 
paper, we will discuss a problem in constructive topology.

2. Theory

2.1 Basic Topology

2.1.1 Compactness

We say a collection of subsets A  is a covering of a space 
X , if the union of the elements of A  is equal to X . It is 
said to be an open covering of X  if these elements are all 
open subsets of X . A space X  is called compact if every 
open covering of X  has a finite sub-cover which means a 
finite subcollection also covers X . This definition is from 
Munkres [7].
2.1.2  -net

Given  > 0  and given a metric space ( , )X d , an  -net 

T X ⊂  is a finite set of points such that every x X∈  is 

within   from a point of T .
The following statement is well known.
Lemma
A closed subset of a complete and separable metric space 
(X d, )  is compact iff for every  > 0 , the finite  -net of 
X  does exists.
2.1.3 Constructive Topological Space

In constructive mathematics, a constructive compact to-
pological space is defined as the closure of the union of 

algorithmically generated  -nets for  =
2
1

k , k N∈ .

Remark: This gives a different object from the construc-
tive version of a compact set given by open covers and 
the closed constructive interval [0,1] is not compact with 
respect to the open cover definition, but it is compact with 
respect to the  -net definition [5], In the following discus-
sion, we will use the  -net definition.
2.1.4 Fundamental Group

Let X  be a space and x0  be a point of X . A path in X  

which begins at x0  and ends at x0  is called a loop that 

based at x0 . The set of path homotopy classes of loops 

based at x0  equipped with the concatenation operation *, 
is called the fundamental group of X  that relative to the 
base point x0 . We denoted it by π1 0( , )X x .

2.1.5 Simply Connected Spaces

A space is called simply connected if its fundamental 
group is trivial.

2.2 Constructive Mathematics

2.2.1 Constructive Mathematics

Constructive mathematics is a branch of mathematics that 
emphasizes the construction of mathematical objects and 
proofs through explicit methods. In contrast to classical 
mathematics, which often relies on non-constructive tech-
niques such as the law of excluded middle or the axiom 
of choice, constructive mathematics requires that mathe-
matical objects be explicitly constructed and that proofs 
provide constructive methods for finding examples or 
solutions.
2.2.2 CRN

A Constructive Real Number (CRN) is a pair of algo-
rithms ( , )F R . An algorithm F  (the fundamental se-
quence) could transform natural numbers into rational 
numbers that are the members of a Cauchy sequence. 
Algorithm R  (regulator of convergence) could transform 
positive rational numbers into natural numbers and it 
could guarantee the convergence in itself of the sequence 
F  , so that for every positive rational  > 0 and every 
m n R, > ()  we have | ( ) ( ) | .F m F n− < 
Definition: A CRN with a standard regulator is a CRN 
( , )F R  that R n n n N( ) = ∀ ∈, , every CRN is equivalent to 
a CRN with a standard regulator.
2.2.3 Computable Function
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A function f N N: → , is called computable if there exists 
an algorithm or a mechanical procedure that, given any in-
put n N∈ , will compute f n( )  in a finite number of steps.
A constructive real function is an algorithm that trans-
forming every CRN into a CRN taking equivalent CRNs 
to equivalent CRNs.
And the computable functions and constructive functions 
are truly the same from the space of all constructive real 
numbers CRNs to the space of all CRNs. And all the usual 
functions such as sine, logarithm etc. are constructive.
2.2.4 Extendible Program

Suppose there is a program H  that could transfer positive 
integers to either 0 or 1. H  is called extendible to all posi-
tive integers if there is another program E  that reproduces 
the outputs of H  whenever H  halts, and program E  pro-
duces some outputs for every positive integer.
2.2.5 Unextendible Algorithmic Functions

An extension of a function f  is a function g , such that f  
is a restriction of g . And by a classical Theorem [8], we 
can find the computable function f  defined on some of the 
positive integers that has no total extension.

3. Theorem
There is no algorithm that given an arbitrary constructive 
compact topological space can always tell if the space is 
simply connected or not.

4. Proof
Prove by contradiction. By Section 1.2.5 there exists a 
computable function P  defined on some of positive in-
tegers that has no total extension. Assume that Q  is an 
algorithm that can always tell us whether a constructive 
compact space X is simply connected or not, such that

	 Q X( ) = 
0,

1,
ifXisnotsimplyconnected

ifXissimplyconnected

Then it is only necessary to find that there do exists an 
extension of the computable function P to deduce the con-
tradiction.
R is an algorithm generating constructive compact con-
structive space. It together with P n( ) run at the same 
time. Now we introduce R  in details. Denote X by the 
space [0,1]×[0,1]. For the first second, R  generates an 
1-net of X . Namely, the 1-net is denoted by
N (1 0,0 , 0,1 , 1,0 , 1,1) = {( ) ( ) ( ) ( )} .

And then in the second, R generates an 1
2

-net denoted by

N i j(2 ( , ) : , 0,1,2) = ={ 2 2
i j } .

And it keeps going on like this. When it is in the k-th sec-

ond, R  generates an 
2
1
k−1 -net denoted by

	 N k m n( ) = ={( , ) : , 0,1,...,2
2 2
m n
k k− −1 1

k−1} .

There are two possible outputs when the program is run-
ning.
If P n( )  terminates at t-th second with some output, then 
R  generates finitely many points in the square. Denote 

X N in =
i=

t

1
( ) , since X n  is finite, we can always remove a 

square with a side length of 
2
1
t+1  from X , which is denot-

ed by

	 C t a b( ) = − + ={( , ) : , 1,31 1
2 2 2 2

a b
t t+ +2 2 } .

Then R  will keep on generating  -nets in X C t\ ( ) . That 

is, R  outputs the space X C t\ ( ).

If P n( )  never terminates, then R  generates the epsilon 
nets for the whole square X  and hence it will be the re-
sulting compact set.
No matter what integer we input as a result of computing 
P n( ) , R  always outputs a space, which is a square with 
the center deleted and some extra points inside of it, so it 
is NOT simply connected.
In both cases we apply Q  to R n( ) , and get a new algo-

rithm P
 

. For integer n , if P n( ) terminates, then R n( )  
is a square with a smaller square inside removed, whose 
fundamental group is nontrivial, hence P

 
 outputs 0; If 

P n( )  doesn’t terminate, then R n( )  is just X , so P
 

 out-

puts P n( ) . So P
 

 is an extension of P , contradicting “ P  
is unextendible”.

5. Corollary
There is no algorithm Q  telling if the fundamental group 
of any arbitrary compact constructive topological space is 
a non-abelian free group with k  generators.
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6. Sketch of Proof
Suppose such an algorithm Q  exists. Denote P  by the 
unextendible in the proof above, we can construct com-
pact metric topological spaces R n( )  in the same way as 

above but just removing k  disjoint rectangles as P n( )  

terminates. Then we could get an extension of P  by Q  
and R , hence the contradiction.

7. Conclusion
The conclusion is that there does not exist an algorithm 
detecting the simply-connectedness of any compact con-
structive topological space. By generalizing this conclu-
sion, we find that it is also impossible to detect whether 
the fundamental group of compact topological space has 
some certain structure or not. This result demonstrates 
some limitations in computational approaches to topology. 
We anticipate that our findings will encourage further ex-
ploration of this subject and motivate mathematicians to 
re-evaluate traditional inquiries within the framework of 
CRN. Looking ahead, we aim to broaden our research to 
encompass more intricate topological characteristics asso-
ciated with CRN.
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