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Abstract:
This essay purely aims to provide basic information related 
to Polya’s Enumeration Theorem and its applications in 
three distinct fields: Chemistry, Music, and Simple graph. 
Each section access the theorem in various insights and 
perspectives, resulting in a mix of ideas without strictly 
deeper focus.
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1. Introduction
(1)Chemistry: Different spatial arrangements be-
tween molecules and a single chemical formula can 
represent more than one molecule (isomers) . The 
number of specific isomers can be counted using Po-
lya’s enumeration theorem. In this essay, we explore 
this problem, providing both theoretical insights and 
a concrete example using (Poly)chlorobenzenes.
(2)Music: Polya’s enumeration theorem can be ap-
plied in diverse goals in music. Determining a spe-
cific k-chord in a n-scale to, we can enumrate the 
number of equivalence class of k-chord when con-
sidering symmetries and other limitations, helping 
achieve goals in enumration of certain kinds of chord 
and other “musical objects”. This essay will focus on 
exploring the number of distinct distinct traids in typ-
ical 12-scale tone considering different group action 
acted on 3-chord permutations.

(3)Simple Graph: Graph theory is essential to many 
branches of mathematics and computer science, 
ranging from algorithm design to network analysis. 
Counting the number of simple non-isomorphic 
graphs for a given number of vertices, n, is a funda-
mental problem in this discipline. In this essay, we 
explore this problem, providing both theoretical in-
sights and a concrete example using n=4 vertices.

2. Concepts
(1)Cycle index
In combinatorial mathematics, Cycle Index is a mul-
tivariable polynomial whose structure allows us to 
simply read how a permutation set acts on the set 
from coefficients and indices. Specifically, the pe-
riodic index polynomial is defined by decomposing 
finite permutation into several intersecting loops (i.e. 
loops without common elements).
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(Tex translation failed)
Here, k represents the number of replaced points. For 
each permutation, its periodic indicator mononomial is a 
mononomial composed of variables (a1, a2, a3…an), where 
the variable (ak) corresponds to a cycle with a period 
length (k).
The average value of the periodic index single term in the 
permutation group G is the periodic index polynomial of 
the permutation group G. The expression is:

	 Z G h f f f f( ) =
∣ ∣G

1 ∑ a a a a k n1 2… …k n 1 2
a a1 2

 

a ak n ,

In this expression, (jk(g)) represents the number of times 
(ak) in the cyclic decomposition of the mutation (g), that 
is, the number of cycles of length (k). ( H ) is the coeffi-
cient, indicating the number of permutations containing 
(ak) (k) cycles in the group G. ( F) Variables represent 
different cycle lengths. Periodic index polynomials can be 
used to enumerate the equivalence classes formed by the 
action of groups.
(2)Simple graph
A simple graph is a collection of vertices (or nodes) con-
nected by edges. Two graphs are said to be isomorphic 
if there is a one-to-one correspondence between their 
vertices and edges such that the adjacency (connectivity) 
is preserved. In simpler terms, if one graph can be trans-
formed into another by simply renaming its vertices with-
out altering the structure, the two graphs are isomorphic.

3. Applications
(1)Application in Chemistry:
In chemistry and molecular physics, a point group is a 
group of symmetrical operations that keep molecules or 
ions unchanged. These symmetric operations include rota-
tion, reflection and inversion. This concept is used to clas-
sify molecules according to the symmetrical properties of 
molecules, which helps to predict the physical and chemi-
cal behaviour of molecules. The following are some com-
mon point groups and their related symmetric elements:
1) C1: asymmetric elements.
2) C2: Contains a C2 axis.
3) C4v:
Example: Tetrafluoro carbon (CF4)
Symmetrical elements: 1. C4 axis: The C atoms in CF4 
are in the centre, and the four fluorine atoms are evenly 
distributed on the vertex of a regular tetrahedron. After 
rotating 90 degrees, the position of the fluorine atom re-
mains unchanged. 2. 4 C2 axes: These axes pass through 
the symmetrical plane of CF4, which are perpendicular 
to the C4 axis. 3. 4 vertical mirrors (σ_v): Each mirror 
passes through the C4 axis and is perpendicular to the C2 

axis. 4. No horizontal mirror (σ_h): There is no horizontal 
mirror in the symmetry of CF4, which conforms to the 
characteristics of C4v point group.
4) D4h:
Example: Titanium tetrachloride (TiCl4)
Symmetrical element: 1. C4 axis: In TiCl4, Ti atoms are 
located in the center, and four chlorine atoms are arranged 
on a square plane. After rotating 90 degrees, the position 
of the chlorine atom remains unchanged. 2. Four C2 axes: 
These C2 axes pass through different symmetric planes of 
molecules and are perpendicular to the C4 axis. 3. 4 verti-
cal mirrors (σ_v): These mirrors pass through the C4 axis. 
4. Horizontal mirror (σ_h): In TiCl4, the horizontal mirror 
on the molecular plane is symmetric.
5) T: The tetrahedral is symmetrical and consists of C3 
and C2 axes.
6) O _ h: octahedral symmetry with multiple C3, C2 axes 
and mirror planes.
To determine the point group of the molecule, we need to 
check its symmetric elements and match them with the 
characteristics of the known point group. This classifica-
tion helps to understand the vibration, spectral character-
istics and reactivity of molecules.
Example of (Poly)chlorobenzenes

step a. Identify the point group
The basic benzene ring belongs to the (D_{6h}) point 
group. However, due to the presence of chiral ligands 
(chloride groups), the D6 group is enough to describe the 
arrangement characteristics of basic benzene ring. The 
symmetry characteristics of this point group can help us 
understand the symmetry of molecules.
step b. The next step involves determining the periodic in-
dex of D6 group. When applying each symmetric element 
in D6, getting the following arrangement:

E: = (1)([61]
300° = (1 2 3 4 5 6) 2)(3)(4)(5)(6) → [16]

C6(orange): 

60° = (1 6 5 4 3 2)

→ 2
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120° = (1 5 3)(2 6 4)

→2[32]

240°  = (1 3 5)(2 4 6)

180°  = (1 4)(2 5)(3 6)     → [23]

C2(blue):
The midpoint of the opposite side

56-23   (14)(23)(56) =

12-45  (12)(36)(45) =  →3[23]

16-34  (16)(25)(34) =

Vertex

1-4  (1)(4)(26)(35) =

2-5  (2)(5)(13)(46) =  →3[12][22]

3-6  (3)(6)(15)(24) =

step c. Thus, the cycle index is

Z D f f f f f f f( 6 1 6 3 2 2 1 2) = + + + + +
12
1 ( 6 1 2 3 3 2 22 2 3 3 )

= + + + +
12
1 ( f f f f f f1 6 3 2 1 2

6 1 2 3 2 22 2 4 3 )
step d. Generating Function:
1) Defining the figure counting series where the power n 
of Cl means that the basic benzene ring attack n chloride 
atoms, as well as 1 (Cl0) means zero chloride atoms. In 
the Pólya’s theorem, the generation function is obtained 
by replacing the variable f with a figure counting series. In 
our case, the f’s terms are given by
f Cln

m n n m= +(1 )
1n=1
2) Now, substituting the figure counting into cycle index:

+ + + + +

F PCB Cl Cl Cl

4 1 3 1 1

(

( Cl Cl Cl

)
2 2

= + + + + +

)3 2
12
1 (

(

1 2 1 2 1)

)

6

2 (
(

) 

6 3) ( )2

= +Cl Cl6 5 +3 Cl Cl Cl Cl4 3 2+ + + +3 3 1
step e. Result
The coefficients of Cl to power of n indicate the number 
of isomers it has.
Example: The coefficient of 3H^4Cl^2 is 3, indicating 
there are three isomers. As the picture has shown:

(2)Application in Music
(a)Define n-Scale
1. An n-scale is what we get when we split an octave into 
n sections. An n-scale has the following object designa-
tions: 0, 1,..., n − 1.
2. When listening to twelve-tone music, two tones that 
are 12 semitones apart are typically recognized. For this 
reason, the cyclic group (Zn, +) of order n is what we des-
ignate as an n-scale.Here, a scale is a sequence of notes or 
tones. Additionally, an octave is the standard way to span 
a scale with 12 notes, each spaced one semitone apart, 
such that the pitch before 0 is designated 11 and the pitch 
after 11 is named 0.
(b) Define transposing and inversion operation
1. Let us define T the operation of transposing as a permu-
tation T:Zn → Zn, a |→ T(a): = 1+a. The group <T> is the 
cyclic group ζn^(E).
2. The operation of inversion can be defined as follows:a 

|→ I(a): = −a, Zn → Zn. The dihedral group ϑn ^(E) is the 
group <T, I>.
(c) Explain k-chord.
Assume that k <= n. In an n-scale, a subset of k Zn ele-
ments is called a k-chord.
2. Let G either equal ϑn ^(E) or ζn^(E). When two 
k-chords, A1 and A2, are equal, it means that there exists 
γ in G such that A2 = γ(A1).
(d) Example:
Let’s take a closer look at traids, a subset of tones con-
sisting of three different tones. Stated otherwise, we shall 
concentrate on the 3-chord, which is a subset of 3 Zn ele-
ments and represents a 12-scale.
We wish to apply Polya’s Enumeration Theorem in this 
case:
Step 1: Define the cycle index of the group G, the cycle 
group of order 12 for example, and construct cycle index 
polynomial:

Step 2: Determine colourings, black and white (same as including the note or not) and substitute expression of 
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variable x, x_i=b^i+w^i for all i:

Step 3: Thus, we can deduce that the number of scales 
with k notes is the coefficient on b^k.
(3)Application in simple graph
(a) Counting the simple graphs with n vertex:
Each edge has the potential to be included or excluded, 
for a total of 𝐶(n,2). Consequently, on n  vertices, there 
are 2C n( ,2) simple graphs.
As an illustration, we display four distinct labeled graphs 
on four vertices. However, the first three graphs displayed 
there are isomorphic to one another. Therefore, the image 
only shows two non-isomorphic graphs on four vertices. 

(b) Example: Counting Non-Isomorphic Graphs for n=4
To illustrate the process, let’s consider the case where 
n=4. Here, we need to count the number of non-isomor-
phic graphs with four vertices.
Step 1: Identifying Permutations
We begin by analyzing the symmetric group S4 , which 

represents all permutations of four vertices. To count 

non-isomorphic graphs, we consider the pair group S4
2 , 

which permutes the 2-element subsets of the set {1,2,3,4}. 
For simplicity, we denote a 2-element subset {i, j} by eij .
Step 2: Corresponding Permutations in Pair Group
For each permutation in S4 ,  we identify the cor-

responding permutat ion in S4
2. For  example,  the 

identity permutation (1)(2)(3)(4) in S4 corresponds 

to (e e e e e e12 13 14 23 24 34)( )( )( )( )( ) in S4
2. Similarly, other per-

mutations such as (12)(3)(4) and (123)(4) correspond to 
distinct cycle structures in the pair group.
Step 3: Counting the Permutations
Next, we determine the number of permutations with each 
possible cycle structure in S4

2 . For instance, a permutation 

in S4 with a single 4-cycle corresponds to a 4-cycle and a 

2-cycle in S4
2 . The number of such permutations is given 

by 3!=6. Similarly, permutations with different cycle 
structures are counted, resulting in a detailed enumeration 
of all possible configurations.

combination
Number of possible 
order

Permutation in S4 . Corresponding permutation in S4
(2)

a single 4-cycle 6 (1,2,3,4) (e e e e e e12 23 34 14 24 13)( )

a 1- cycle and a 3-cycle 8 (1)(2,3,4) (e e e e e e12 13 14 23 34 24)( )

two 1-cycles and a 2-cycle 6 (1)(2)(3,4) (e e e e e e12 13 14 23 24 34)( )( )( )

two 2-cycles 3 (1,2)(3,4) (e e e e e e12 13 24 23 14 34)( )( )( )

Identity 1 (1)(2)(3)(4) (e e e e e e12 13 14 23 24 34)( )( )( )( )( )

Step 4: Cycle Structure and Generating Function
With the cycle structures identified, we can write the cycle 
index for the pair
group S4

2 as:

P x x x x x x x x
S4

2 ( 1 6 1 1 2 3 2 4, , 9 8 6… = + + +)
24
1 ( 6 2 2 2 )

To enumerate the graphs,  we subst i tute x xi = +1
for 1 6≤ ≤i , which accounts for the presence or absence 
of each edge. This yields the generating function:

P x x x x x x x x
S4

2 (1 , ,1 1 2 3 2+ … + = + + + + + +) 2 3 4 5 6

This function indicates the number of 4-vertex graphs 
with m edges, where 0 6.≤ ≤m

The number of non-isomorphic graphs with n vertex and 
k edges is given by the coefficient of xi  in the generating 
function.
(c) Conclusion:
By substituting x=1 into the generating function, on four 
vertices, we find that there exist eleven non-isomorphic 
graphs. This significant decrease from the 64 simple 
graphs emphasizes how crucial it is to take graph isomor-
phism into account while comparing distinct graph archi-
tectures. The method presented here provides a systematic 
approach to solving this problem, with potential applica-
tions in analyzing larger graphs or different graph types.
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4. Conclusions
Based on the following, we can conclude that:
1) The number of specific isomers can be counted using 
Polya’s enumeration theorem.
2)Polya’s enumeration theorem can enumerate the number 
of chords with k notes in a typical 12-note scale.
3)Polya’s enumeration theorem can count non-isomorphic 
graphs with n vertices.
Overall, Polya’s theorem streamlines complex counting 
tasks by leveraging symmetry and rotation, making it a 
valuable tool in these diverse areas.
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