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Abstract:
The two basic puzzles in Rubik’s cube can be summarized 
as recognizing solvable configurations and finding a 
common solution for valid configurations. Indeed, in the 
process of solving the first puzzle, we are required to come 
up with a common solution. The mathematical structure of 
moves in Rubik’s cube is also famous. This paper clarifies 
the difference between process and essence through an 
original concept: effect, and redefines the operation group 
G in a strict way. It also corrects a widespread mistake 
in pinpointing the mapping type between the operation 
group G and permutation groups, which appears in some 
former papers. The effect system grasps the essence of 
operations, introduces reference frames in physics through 
pure mathematics, and specifically facilitates the solution 
for the basic puzzles in Rubik’s cube and megaminx. 
The effect system has the potential to be utilized in 
physically symmetric structures with moves that permute 
mathematically analyzable configurations.

Keywords: Rubik’s cube, Megaminx, Group theory, 
Valid configuration, Solution, Reference frame, Effect

1. Basic knowledge
In this part, we will cover the necessary mathematics 
for this paper. We will list the well-defined defini-
tions and theroems, but not give proofs. If you are 
not familiar with some knowledge, access to the text-
books about abstract algebra, for example, Abstract 
Algebra from David S.Dummit and Richard M.Foote.
Definition1.1(Binary Operation) A binary operation * 
is a kind of operation which turns two elements into 
a new element(can be one of the original two), writ-
ten as: a*b=c.
Definition1.2(Group) A group G is a set with a binary 
operation (*) which can work on any two elements in 

the set, satisfying four properties:
1. Closure: For any two elements a and b in the set, 
a*b is still in the set(a and b can be the same ele-
ment)
2. Associativity: For any three elements a, b and c, 
(a*b)*c=a*(b*c).
3. Identity: There exists an element e in the set which 
satisfies e*a=a*e=a for any element a. (Usually we 
denote the identity in a group by e)
4. Invertibility : For any element a in the set, there 
exists an element b which satisfies a*b=b*a=e. (Usu-
ally such b is called an inverse of a)
Theorem1.1(Uniqueness of inverse) An element in a 
group only has one inverse.
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Definition1.3(Permutation) A permutation is a rearrange-
ment of the order of elements in a set.
Definition1.4(Cycle notation of permutation) Any per-
mutation can be denoted by a cycle. Specifically, if a 
permutation σ turns n elements assigned in the order 
(m1,m2,m3,...,mn) to an order (mi1,mi2,mi3,...,min), where i1 
to in are a sequence of 1 to n, then σ is written as (m1 mi1...)
(mk mik...)... . Here we say that m1 goes to mi1, m2 goes to 
mi2, and so on; we start the cycle notation from m1, and 
end the first cycle by the element which is turned into m1, 
if this cycle hasn’t included all the elements, we continue 
to the second cycle which begins with the leftmost ele-
ment that is not included yet. This process ends when all 
the elements are included in the cycles.
Definition1.5(Product of permutations) Two permutations 
σ1 and σ2’s product is still a permutation which satisfies 
(σ1σ2)(i)=(σ1)(σ2(i)) for any element i in the corresponding 
set.
Theorem1.2(Decomposition of permutations) Each per-
mutation, written by definition1.4 as a product of (long) 
cycles, can be written in a product of some 2-cycles(cycles 
which include 2 elements), here “ product of 2-cycles” re-
fers to the product of permutations which are denoted by 
2-cycles.
Theorem1.3(Permutation group) The set of permutations 
working on n(n is a positive integer) elements with a bina-
ry operation as the product defined in Definition1.5 forms 
a group. We call this group a permutation group, denoted 
by Sn.
Theorem1.4(Fixness of decomposition):In any notation of 
2-cycles’ product representing the same permutation, the 
amount of 2-cycles has the same parity.
Definition1.6(Signature) We designate the permutations 
which can be decomposed into an odd number of 2-cycles 
to have signature -1, the permutations which can be de-
composed into even number of 2-cycles to have signature 
1.
Definition1.7(Subgroup) If G is a group, H is a subset of 
G and the elements in H follow the same binary operation 
in G, additionally, if H satisfies the four properties of a 
group, then H is called a subgroup of G.
Definition1.8(Homomorphism)If G(The binary operation 
is #) and G’(The binary operation is *) are two groups, 
there exists a mapping φ which satisfies φ(g1)*φ(g2) = 
φ(g1#g2), where the mapping is from G to G’, g1 and g2 are 
any two elements in group G, then φ is called a homomor-
phism(from G to G’). (When we are talking about a map-
ping from a group or to a group(or from and to a group), 
we consider the mapping from set to set, regardless of the 
binary operation in a group.)
Definition1.9(Kernel) We call a set the kernel of a map-
ping if this mapping is a homomorphism from a group G 

to a group G’ and this set exactly contains all the elements 
that are mapped to the identity in group G’. The kernel of 
a mapping φ is sometimes written as kerφ.
Definition1.10(Restrict) If there is a mapping φ from a 
set(or a group) A to a set(or a group) B and there is a sub-
set A’ of set A, then we call the mapping φ’ from A’ to B 
which follows the same rules of φ a restrict on φ.
As an alternative notation, φ|A’ refers to the same restrict 
on φ.
Definition1.11(Ak) Ak is the subgroup of Sk consisting of 
all the even permutations(permutations with signature 1) 
in Sk.
Definition1.12(Generator) A set of elements are called 
a generator of a group if and only if these elements and 
their inverses’ all possible finite products(By the binary 
operation; By finite elements) cover all the elements in 
this group.
Theorem1.5(Generators of Ak and Sk) The set of all the 
3-cycles in Ak is a generator of Ak, the set of all the 2-cycles 
in Sk is a generator of Sk.
Definition1.13(Group action) We say a group G acts on a 
set A if for any a in A and any g in G, there is an operation 
* that a * g is still an element in A and this operation satis-
fies the following two properties:
1. (a*g1)*g2=a*(g1g2) for any g1, any g2 2. a*e=a
(Here g1g2 is the product in G by binary operation)
Definition1.14(Orbit) If G acts on A, then the orbit of any 
element a in A is: {a*g|g∈ G}.
Theorem1.6 Suppose a finite group G acts on a set A, and 
let S be a generator of G. Let P be a property such that the 
following is true: Whenever a ∈ A satisfies P and s ∈ S, 
a * s also satisfies P.
Then, if a’ ∈ A satisfies P, every element in the orbit of a’ 
also satisfies P.
The proof for theorem1.6 can be found in [1]. Theorem1.6 
will be useful when we analyze Rubik’s cube and me-
gaminx.

2. Mathematization of Rubik’s Cube

2.1 Rubik’s Cube
Rubik’s cube is a symmetric structure with six big faces 
and 26 small cubes, which form a 3×3×3 cube (The kernel 
space is empty). (Fig.2.1) There are 6 center cubes, each 
has only one face with color; 12 edge cubes, each has two 
faces with color; 8 corner cubes, each has 3 faces with 
color. The upper big face is denoted by U, the right big 
face is denoted by R, the left big face is denoted by L, the 
frontal big face is denoted by F, the bottom big face is de-
noted by D and the back big face is denoted by B.
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Figure2.1 A Rubik’s cube view from red face
If a Rubik’s cube looks the same as Fig.2.1, we say that it 
is solved. Each big face can be rotated, but other rotations 
are not allowed, such as rotating a slice between two big 
faces. The six big faces correspond to six colors:white, 
blue, green, red, orange and yellow because the center 
cubes are always fixed in position. When consider rota-
tions, a capital refers to the rotation of the corresponding 
big face clockwise by 90 degrees, a capital with power -1 
refers to the rotation of the corresponding big face coun-
terclockwise by 90 degrees(Here “clockwise” is local, 
we mean the clockwise rotation seen from respective big 
face). As a custom, we call a sequence of
rotations which is viable or e(the element of operating 
nothing) a move. Now we call U, U-1,L,L-1,R,R-1,F,F-1, 
B,B-1,D,D-1 the 12 single moves. It is a commen sense that 
any move can be denoted by a sequence of single moves, 
except e. One thing to clarify is that moves are defined 
by process------the sequence of single moves or the pro-
cess of doing nothing, for example, RR-1 does not equal 
to R-1R. The definition of moves is a pure reflection of 
physical world, which is easy to understand. However, the 
set of moves can not form a group with a binary operation 
“stacking in time” because every element except e lacks 
its inverse. Although in some lecture notes, Janet Chen 
solved this vaguely by arguing that all the moves which 
result the Rubik’s cube in the same configuration are 
defined the same [1], then what is move, and what if the 
initial configurations are not the same? (You can simply 
regard configuration as the setting of small cubes’ posi-
tion and orientation, the strict definition is in chapter 2.2) 
Move is move, it is a sequence of rotations, a reflection of 
process. Nonetheless, the lecture notes’ idea is correct, it 
aims to mix all the moves which make the same change, 
or the same effect. One of this paper’s focuses is to ad-
dress this issue clearly and nicely, you will see in chapter 
2.4.

Before discussing configurations, we need to introduce 
some basic notation which tracks some features of a Ru-
bik’s cube. As a tradition [2], we use lowercase letters to 
denote the position of corner cubes and edge cubes.
For example, dbr refers to the corner cube which has a 
face in D, a face in B and a face in R; uf refers to the edge 
cubes which has a face in U and a face in F. However, 
when consider corner cubes’ position and edge cubes’ po-
sition seperately, this paper will sometimes adapt an easier 
notation(numbers):
Corner cubes:
1:ulf 2:urf 3:urb 4:ulb 5:dlb 6:dlf 7:drf 8:drb
Edge cubes:
1:ub 2:ur 3:uf 4:ul 5:bl 6:br 7:fr 8:fl 9:db 10:dr 11:df 12:dl
In order to denote the orientation of corner cubes and edge 
cubes in different positions, we think of a consistent trace 
“mark” and an unchangeable evaluation system.
Imagine using a mark pen to write numbers 0,1 and 2 on 
each corner cube when the Rubik’s cube is original
(solved). We write 0 on each upper face of the four upper 
cubes(1,2,3,4) and each lower face of the four bottom 
cubes, then we designate 1 and 2 respectively to each 
corner cube. When designating, we assign 1 and 2 locally 
clockwise(When you look from the outer world to a spe-
cific corner cube, you assign 1 and 2 clockwise after 0. It 
does not matter if you look from any of the perspective 
where you can see the corner cube, because“clockwise”in 
this situation is the same). That is, following a locally 
clockwise order, we mark 0,1,2 on each cube. One thing 
important is that these marks move with the corner cubes. 
Now, consider a specific assignment of small cubes’ posi-
tion and orientation which we can achieve through moves, 
we use x1 to represent the mark that appears on ulf’s u 
face after moving to this specific assignment from the 
original, we use x2 to represent the mark that appears on 
urf’s u face after moving to this specific assignment from 
the original, and so on(Here x1 to x8 correspond to 1 to 8 
respectively).
Similarly, we can use marks accompanying with cubes 
and an unchangeable evaluation system which tracks spe-
cific places’ values to show edge cubes’ orientation. Imag-
ine that there exists an orginal Rubik’s cube with all small 
cubes in the right position and have the right orientation. 
We mark 0 on the u face of ub, the u face of ur, the u face 
of uf, the u face of ul, the b face of bl, the b face of br, the 
f face of fr, the f face of fl, the d face of db, the d face of 
dr, the d face of df and the d face of dl. Other 12 faces on 
edge cubes are marked 1. Now we can consider any spe-
cific assignment of small cubes’ position and orientation 
(that can be moved from the original), y1 to y12 track the 
values on the places which originally have 0s.
To extend the definition to the assignment of cubes which 
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we can not move to from original assignment, we imagine 
that after marking all the values, we split all the corner 
cubes along with edge cubes and reassemble them to an 
assignment which can not be achieved through moves, 
then we still use x1 to x8 and y1 to y12 to track the values.

2.2 Configuration
Configurations in Rubik’s cube refers to the settings of 
small cubes. After all, we can only change the position 
and orientation of small cubes. In order to facilitate our 
discussion in following chapters, we now consider all the 
possible configurations of a Rubik’s cube after splitting 
off all the corne cubes along with edge cubes and reas-
sembling them on. The configuration of a Rubik’s cube 
is denoted by(σ,τ,x,y), corresponding to four dimensions: 
the position of corner cubes, represented by σ; the position 
of edge cubes, represented by τ; the orientation of corner 
cubes, represented by x; the orientation of edge cubes, 
represented by y. It is clear that a configuration is exactly 
determined by these four dimensions. On the one hand, 
if these four dimensions are known, we have exactly one 
way to assemble the small cubes. On the other hand, once 
we know the configuration of a Rubik’s cube, we know 
the information of these four dimensions. By inheritng the 
notation from Janet Chen[1], we define the four dimen-
sions’ mathematical expression well in the following way:
Suppose any configuration a = (σ,τ,x,y).
1. σ(corner cubes’ position): 
σ: This is a permutation, we define it as the permutation 
which turns the 8 corner cubes from original position to 
the position in a(The original position is:1 2 3 4 5 6 7 8; 
the position in a is the number sequence of corner cubes in 
a, from ulf to dbr, here number means the original number 
for a cube).This permutation exactly describes the posi-
tion of corner cubes in configuration a.
2. τ(edge cubes’ position):
τ: This is a permutation, we define it as the permutation 
which turns the 12 corner cubes from original position to 
the position in a(The original position is:1 2 3 4 5 6 7 8 9 
10 11 12; the position in a is the number sequence of edge 
cubes in a, from ub to dl, here number means the original 
number of a cube). This permutation eaxctly describes the 
position of edge cubes in configuration a.
3. x(corner cubes’ orientation):
x: x=(x1,x2,x3,x4,x5,x6,x7,x8) Here x1 to x8 refers to the 8 
values in configuration a, as we defined in chapter2.1.
4. y(edge cubes’ orientation):
y: y=(y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12) Here y1 to y12 re-
fers to the 12 values in configuration a, as we defined in 
chapter2.1.

2.3 Effect
Effect is commonly used in daily life, but in this paper, we 
will define effect through pure mathematics. It will help 
us clarify the group G(operation group) which acts on the 
set of configurations, and promote the construction of the-
orems based on reference frames.
By some observation, we can notice that many moves 
essentially do the same thing. For example, R and R5(We 
usually use power to denote repetitive single moves in a 
row)are essentially the same because they both exactly ro-
tate the right big face clockwise by 90 degrees. We define 
effect as the abstract expression of such essence.
Here is the definition:
Definition2.1(Effect) If a move M turns configuration 
a = (σ,τ,x,y) to configuration a’ = (σ’,τ’,x’,y’), then this 
move’s effect is ef(M)=(σ’σ-1,τ’τ-1,X,Y).
Here x’=(x’1,x’2,x’3,x’4,x’5,x’6,x’7,x’8);
y’=(y’1,y’2,y’3,y’4,y’5,y’6,y’7,y’8,y’9,y’10,y’11,y’12); 
X=((x’σ’σ-1(1)-x1)mod3,(x’σ’σ-1(2)-x2)mod3,...,(x’σ’σ-
1(8)-x8)mod3); Y=((y’τ’τ-1(1)-y1)mod2,(y’τ’τ-1(2)-y2)
mod2,...,(y’τ’τ-1(12)-y12)mod2).
In the following discussion, we will use ef(M)1 to denote 
corresponding σ’σ-1, ef(M)2 to denote corresponding τ’τ-1, 
ef(M)3 to denote corresponding X, ef(M)4 to denote cor-
responding Y. We can deduce a theorem which connects 
effect with familiar expression.
Theorem2.1 For any move M which turns configuration 
a to a’, ef(M)1 is the permutation of M on the position of 
corner cubes;ef(M)2 is the permutation of M on the posi-
tion of edge cubes; assume ef(M)3’s kth value is m, 120m 
is the degree which we need to rotate a corner cube coun-
terclockwise after it is moved from the position in config-
uration a to the position in configuration a’ while keeping 
the tracked face in configuration a still a tracked face; 
assume ef(M)4’s lth value is n, 180n is the degree which 
we need to rotate a edge cube counterclockwise after it is 
moved from the position in configuration a to the position 
in configuration a’ while keeping the tracked face in con-
figuration a still a tracked face.
(Here tracked face means the face which we record its 
value in x or y; k can be any integer among 1 to 8; l can 
be any integer among 1 to 12)
Proof. Let the permutation of position of corner cubes be 
σcorner. Because σcornerσ(i) = σ’(i) when we take i from 1 to 
8, σcornerσ = σ’. Therefore, σcorner = σ‘σ-1. Similarly, we get 
τcorner = τ’τ-1, thus we finish half the proof. Now consider 
corner cubes’ orientation. Assume that the original tracked 
face on the corner cube i is turned to a specific position in 
configuration a’(i can be any integer from 1 to 8). Now xi 
is just the value on this initially tracked face. If this face 
in a’ is 120k degrees behind the tracked face on the same 
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cube(k may be 0 or 1 or 2; “behind” means we need to 
rotate the corner cube locally clockwise by some degrees 
to turn a face into the tracked face), then x’σ’σ-1(i) = (xi+k)
mod3. Thereby, (x’σ’σ-1(i)-xi)mod3 should be k. Because 
rotating a face from a specific place to the tracked place 
on the cube is just the inverse process of rotating the same 
cubes’ tracked face to the specific place, we finish our 
proof about ef(M)3. Similarly, we obtain that the ef(M)4 
part in the theorem is right.
Through theorem2.1, we know that a effect should exactly 
describes what a move do to the Rubik’s cube,
regardless of the initial configuration.
Theorem2.2 If A,B are two moves and they do the same 
thing, then ef(A)=ef(B).
(Do the same thing means that A and B send any pair of 
two cubes which locate in the same position of the two 
initial configurations to the same position of the two final 
configurations and rotate them in the same way.)
Proof. This is a direct corollary of theorem2.1.
By theorem2.2, we know that we can refer to any effect 
by merely writing it as ef(M), here M is a move which has 
the effect we want. That is, we don’t need to consider the 
initial configurations because the same move acting on 
different initial configurations should do the same thing. 
In the following text, we may stilll mention the initial con-
figurations and the final configurations of a move, mainly 
for denoting some effects.
For the sake of systematicness, we define the product of 
effects.
Definition2.2(Multiplication of effect) If a move 
A turns configuration a=(σa,τa,xa,ya) to configura-
tion a’=(σa’,τa’,xa’,ya’), a move B turns configuration 
b=(σb,τb,xb,yb) to configuration b’=(σb’,τb’,xb’,yb’), then
ef(A)ef(B)=(σb’σb

-1σa’σa
-1,τb’τb

-1τa’τa
-1,Xab,Yab), where 

Xab=((Xb(σa’σa-1)(1)+Xa1)mod3,(Xb(σa’σa-1)(2)+Xa2)mod3,...,
(Xb(σa’σa-1)(8)+Xa8)mod3), Yab=((Yb(τa’τa-1)(1)+Ya1)mod2,(Y-
b(τa’τa-1)(2)+Ya2)mod2,...,(Yb(τa’τa-1)(12)+Ya12)mod2), Xai rep-
resents the ith value in Xa, Xbj refers to the jth value in Xb, 
Yak refers to the kth value in Ya, Ybl refers to the lth value 
in Yb. (We denote ef(A)3 by Xa, ef(A)4 by Ya, ef(B)3 by Xb, 
ef(B)4 by Yb)
Usually we only consider the overall effect of a move A 
followed by a move B. Thus, to verify that Definition2.2 
defines the product of effect well, we only need to show 
that ef(AB)=ef(A)ef(B).
Theorem2.3 ef(AB)=ef(A)ef(B)
Proof. σb’σb

-1σa’σa
-1 is obviously the permutation of posi-

tion of corner cubes by AB considering any corner cube 
i, τb’τb

-1τa’τa
-1 is also obviously the permutation of position 

of edge cubes by AB. For any interger i among 1 to 8, 
because (Xb(σa’σa-1)(i)+Xai)mod3 = ((xb’(σb’σb-1σa’σa-1)(i)-xb(σa’σa-1)

(i))mod3+(xa’(σa’σa-1)(i)-xai)mod3)mod3 = (xb’(σb’σb-1σa’σa-1)(i) 

-xb(σa’σa-1)(i)+xa’(σa’σa-1)(i)-xai)mod3 = ef(AB)3i when xb(σa’σa-1)

(i) = xa’(σa’σa-1)(i), we only need to consider the situation of 
xb(σa’σa-1)(i)≠xa’(σa’σa-1)(i). (xai refers to the ith value in xa, simi-
lar for xa’i; ef(AB)3i refers to the ith value in ef(AB)3)
By theorem2.2, we know that the equation still holds true 
when xb(σa’σa-1)(i)≠xa’(σa’σa-1)(i) because(xb’(σb’σb-1σa’σa-1)(i)- xb(σa’σa-1)

(i))mod3 and (xa’(σa’σa-1)(i)-xai)mod3 remain the same. There-
fore, ef(AB)3=Xab. Similarly, ef(AB)4=Yab, which finishes 
our proof.
Theorem2.3 also shows that the product of effects is still 
an effect.
Theorem2.4 The multiplication of effect satisfies associa-
tivity.
Proof. Suppose ef(M1), ef(M2), ef(M3) are any three ef-
fects. Then it suffices to show that (ef(M1)ef(M2))ef(M3)=
ef (M 1) (e f (M 2)e f (M 3) ) .  F i r s t ly,  ( (e f (M 1)e f (M 2) )
ef(M3))1=(ef(M1)(ef(M2)ef(M3)))1 and ((ef(M1)ef(M2))
ef(M3))2= (ef(M1)(ef(M2)ef(M3)))2 because the multipli-
cation of permutations satisfies associativity. Second-
ly, ((ef(M1) ef(M2))ef(M3))3=(ef(M1)(ef(M2)ef(M3)))3. 
Assume that M1 turns a configuration (σm1,τm1,xm1,ym1) 
to (σm1’,τm1’,xm1’,ym1’),M2 turns (σm2,τm2,xm2,ym2) to 
(σm2’ ,τm2’ ,xm2’ ,ym2’) ,M3 turns (σ m3,τm3,xm3,ym3)  to 
(σm3’,τm3’,xm3’,ym3’),M2M3 turns (σm2,τm2,xm2,ym2) to 
(σm2

*,τm2
*,xm2

*,ym2
*).Then it suffices ti show that:X-

m2
*

(σm2
*,τm2

*,xm2
*,ym2

*
)(i)-Xm2(σm2,τm2,xm2,ym2)(i)Ξ (Xm3’(σm3

’σm3
-

1σm2
’σm2

-1σm1
’σm1

-1
)(i)-Xm3(σm2

’σm2
-1σm1

’σm1
-1

)(i))+(Xm2’(σm2’σm2-
1σm1’σm1

-1
)(i)-Xm2(σm1

’σm1
-1

)(i))mod(3) because the three 
differences (LHS, RHS’s two brackets)won’t change with 
different asssumptions of initial configirations。However, 
the equation should be true if we replace(σm1

’σm1
-1)(i)by j.

S imi la r ly,  we  can  prove  tha t  ( (e f (M 1)  e f (M 2) )
ef(M3))4=(ef(M1)(ef(M2)ef(M3)))4.
T h e o r e m 2 . 5  e f ( M 1M 2M 3. . . M n) = e f ( M 1) e f ( M 2)
ef(M3)...ef(Mn)
P r o o f .  e f ( M 1 M 2 M 3 . . . M n ) = e f ( M 1 M 2 . . . M n - 1 )
ef(Mn)=ef(M1M2...Mn-2)ef(Mn-1)ef(Mn)=...=ef(M1)ef(M2)
ef(M3)...ef(Mn).

2.4 Operation Group
We  c a n  n o t i c e  t h a t  a  m o v e  h a s  o n l y  o n e  e f -
fec t ,  bu t  an  e ffec t  i s  a lways  owned by  count-
less moves. For example, ef(R)=((2 3 8 7),(2 6 10 
7),(0,2,1,0,0,0,1,2),(0,0,0,0,0,0,0,0,0,0,0,0))=ef(R5)=ef
(R9)=... We now assign a name for a set of moves which 
have the same effect.
Definition2.3(Operation) An operation is a set of moves 
which have the same effect.
If an operation has a move M in it, we denote this opera-
tion by [M].
Now we can address the issue in chapter2.1 that moves 

5



Dean&Francis

220

ISSN 2959-6157

can not form a group under strict definition because oper-
ations can. First we define the binary operation for opera-
tions.
Definition2.4(Product of operation) If M1 and M2 are two 
moves, then[M1][M2]=[M1M2].
We designate the binary operation for operations as the 
product in Definition2.4.
Theorem2.6 All the operations in a Rubik’s cube form a 
group. (We take the product of operations as the binary 
operation)
Proof.
Closure: By definition, we know the product of two oper-
ations is still an operation.
Associativity:  [(M1M2)M3]=[M1(M2M3)] because 
ef((M1M2)M3)=ef(M1(M2M3)). Therefore,
([M1][M2])[M3]=[M1M2][M3]=[(M1M2)M3]=[M1(M-
2M3)]=[M1][M2M3]=[M1]([M2] [M3]).
Identity: The identity can be [e]. For any operation [M], [e]
[M]=[M]=[M][e].
I n v e r t i b i l i t y :  F o r  a n y  o p e r a t i o n  [ M ] ,  w h e r e 
M=m1m2...mn(m1 to mn are single moves), we define 
M-1=mn

-1mn-1
-1... m1

-1, (For any mi from m1 to mn, mi
-1 is the 

single move which rotate the same face as mi in opposite 
direction) then
[M-1][M]=[M-1][M]=[e].
Indeed, the operation group is a finite group because the 
amount of possible effects is limited. We will call this 
finite group as G in following parts. In fact, former re-
searchers have found this group but lack of strict defini-
tion, because they have not described the effects of moves 
so clearly[3]. When they define the operation group G, 
they could only vaguely argue that “we call the moves 
which result the Rubik’s cube in same configuration the 
same move”. If the initial configurations are not the same, 
then how can this statement work? Granted that we can 
say “we call the moves which do the same thing the same 
move”, how can we define “do the same thing”? We can 
only explain “ do the same thing” as changing the position 
and orientation of cubes in the same way, which is exact-
ly the concept that “two effects are the same”. Thus, the 
concept of effect is a must in clarifying the group G for 
Rubik’s cube.
Effect is not only useful in clarifying group G. Effect itself 
expresses what a move does essentially and can be applied 
in clearly describing some mappings(Theorem2.7) and 
strictly deducing some algorithms(chapter3.1).

2.5 Homomorphisms from G
There are some homomorphisms from operation group G 
to other groups. However, a widespread mistake is that the 
mapping from G to S8 is a homomorphism when we map 

each operation(In these papers operation is called “move”) 
to the corresponding permutation of position of corner 
cubes[4]. The reason is that the binary operation defined 
in S8 doesn’t align with “stacking in time order”. We need 
to create a new group named S8’ which has the same el-
ement as S8 but a binary operation in a inverse order to 
form the homomorphism we want.
Definition2.5 Sk’ is the group with the same elements of Sk 
but a binary operation * defined as: σa* σb=σbσa.
(k may be any positive integer, σa and σb can be any two 
permutations in Sk’)
Theorem2.7 The mapping from G to S8’: φcorner (for a move 
M, φcorner([M])=ef(M)1) is a homomorphism.
Proof. φcorner([M1])*φcorner([M2])=ef(M2)1ef(M1)1=ef(M-
1M2)1=φcorner([M1M2]).
(By theorem2.1,  we know that  (ef(M 2) 1ef(M1)1)
( i)=(ef(M1M2)1)( i)  for  any i  among 1 to 8,  thus 
ef(M2)1ef(M1)1 =ef(M1M2)1)

3. Reference Frames and Valid config-
urations
In physics, we know that moves are relative because we 
can adapt different reference frames. This idea can be ap-
plied in the Rubik’s cube. This chapter will introduce how 
this idea works and offer strict proofs. After that, some 
application of this in analyzing valid configurations will 
be discussed.

3.1 Reference Frames
As a commen sense, if we can make some specific chang-
es to the Rubik’s cube, such as flip two adjacent corner 
cubes at the same time without disturbing the position of 
all the cubes, then we can do the same thing on another 
two adjacent corner cubes by looking the whole Rubik’s 
cube in a new way. That is, when we look from another 
perspective(Indeed change a reference frame), then we 
can do relatively the same thing as before because “simi-
lar” viewed from different reference frames can be “same”.
However, how can we prove “do the same thing” mathe-
matically? The answer is to grasp the essence of moves ---
--- effects.
Definition3.1(24 Reference frames) In a Rubik’s cube, we 
define the basic reference frames to be the 24 viewing it 
from 6 faces, with the corresponding 4 directions looking 
each face. (In following discussion, we will simply use 
“reference frame” to replace “basic reference frame”)
In a new reference frame, we should define configuration 
and effect in a new way.
Theorem3.1 If there exists a move with a specific effect in 
a reference frame, then there exists a move with that effect 
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in any reference frame.
Proof. We can prove this by decomposition. Assume the 
known move M=m1m2m3...mn, where m1 to mn are single 
moves. By theorem2.5, ef(M)=ef(m1)ef(m2)ef(m3)...ef(mn). 
Now construct a move M’ in the another reference frame. 
We require that M’ is written as m1m2...mn in this refer-
ence frame. Thus, ef(M’) in this reference frame is the 
same as ef(M) in the first reference frame.
Theorem3.1 implies that if there exists a move which does 
some thing in a reference frame, there should exist a move 
which does the same thing within any another reference 
frame because effects exactly correspond to what moves 
do(Theorem2.1).
Theorem3.2(Extension of moves) If there exists a move 
which does some change to the Rubik’s cube within a ref-
erence frame, then there exists moves in the same refer-
ence frame for similar changes. (Here two similar changes 
means that when we view the second one from another 
reference frame, the change becomes the same as the first 
one)
Proof. The single moves in any reference frame are still 

single moves in other reference frames.
Theorem3.2 obviously has a value of application. An ex-
ample is given in Fig3.2.

3.2 Valid Configuration of Rubik’s Cube
As we mentioned in the abstract, the condition that config-
urations are valid has a sufficient and necessary condition. 
(Here valid means solvable)
Theorem3.3 A configuration a = (σ,τ,x,y) is valid if and 
only if sgnσ = sgnτ, Σxi ≡0(mod3), and Σyi≡0 (mod2).
This theorem can be proved by theorem1.6 with the help 
of generators. This paper will omit some discussions 
and apply theorem3.3 to prove the key facts needed for 
proving theorem3.3[1]. We will illustrate the process of 
extending a single move with a specific effect to some 
similar moves, which shows how the facts are proved in 
our way.
Fact3.1 Any three corner cubes’ position can be cycled by 
move without changing the position of other corner cubes.

Figure3.1
*The first configuration can be restored by F-1UBU-1FUB-

1U-1, the second configuration is the same situation
within another reference frame. The third configuration is 
an instance that we can restore by combining the process 
restoring the first cofiguration and the process restoring 

the second configuration.
Fact3. 2 Any two corner cubes can be flipped by move 
without changing the position of all corner cubes and the 
orientation of other corner cubes.

Figure3.2
*The first configuration can be restored by (LD-1L-1F-1D-

1FUF-1DFLDL-1U-1)2, the second configuration is the
same situation within another reference frame. The third 
configuration is an instance that we can restore by com-
bining the process restoring the first configuration and the 
process restoring the second configuration.
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Fact3.3 Any three edge cubes’ position can be cycled by 
move without changing corner cubes and the position of 

other edge cubes.

Figure3.3
*The first configuration can be restored by ULLU-1F-1D-1B-

1LLBDF, the second configuration can be restored by LR-

1FFL-1RUU. The fourth configuration is the combinition 
of the restoration method in the first configuration and the 
one in the third configuration, which is just the situation 

of the second configuration within a different reference 
frame.
Fact3.4 Any two edge cubes can be flipped by move with-
out chaning their position and other cubes

Figure3.4
*The first configuration can be restored by FRBLUL-1UB-

1R-1F-1L-1U-1LU-1. The second configuration is the same
situation within a different reference frame. By combini-
tion, we know that the third one can be restored.

3.3 Valid Configuration of Megaminx
To analyze megaminx, we will inherit effect system and 
reference frames from Rubik’s cube. When defining con-
figurations, we assign 0,1,2 to corner cubes and 0,1 to 
edge cubes locally clockwise. Based on the definition of 
condiguration, effect system is constructed with 60 basic 
reference frames. A conclusion is that theorem3.2 holds 

true if we replace Rubik’s cube by megaminx.
Similar to chapter3.2, we will highlight the four facts 
which are the key for proving theorem3.4[5]. We will 
show how we extend certain moves through reference 
frames. The mechanism is exactly the same as how we 
extend moves in Rubik’s cube. This paper will list the 
specific moves which restore the first figures.
Theorem3.4 A configuration a = (σ,τ,x,y) is valid if and 
only if sgnσ = sgnτ=1, Σxi ≡0(mod3), and Σyi≡0 (mod2).
Fact3.5 Any three corner pieces’ position can be cycled by 
move without changing the position of other corner piec-
es.

Figure3.5
*The move which restores the first figure is D-1FDA-1D-

1F-1DA.(The letters correspond to the 72 degree clockwise 
turns of different faces. A letter with a power -1 means 
turning the face 72 degrees counterclockwise. Here A 
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corresponds to the face with center cube white, B corre-
sponds to the fae with center cube purple, C to blue, D to 
brown, E to orange, F to green. In other reference frames, 
the same letter refers to the relatively same position’s 

face.)
Fact3.6 Any two corner pieces can be flipped by move 
without changing the position of all corner pieces and the 
orientation of other corner pieces.

Figure3.6
*The move which restores the first figure is D-1F-1F-1E-

1FDA-1D-1F-1EFFDA.
Fact3.7 Any three edge pieces’ position can be cycled by 

move without changing corner pieces and the position of 
other edge pieces.

Figure3.7
*The move which restores the first figure is D-1D-1F-1B-

1DC-1C-1D-1BA-1B-1DCCD-1BAFDD.
Fact3.8 Any two edge pieces can be flipped by move with-
out chaning their position and other pieces. 

Figure3.8
*The move which restores the first figure is B-1DC-1C-

1EFC-1C-1D-1BA-1B-1DCCF-1E-1CCD-1BA.

4. CONCLUSION
This paper introduces effect to denote the essence of 
moves. With the help of effect, it clarifies the structure of 
the operation group G in Rubik’s cube with well defined 
elements and well defined binary operation. Besides, this 

paper corrects the mapping from G to S8 and G to S12, 
further deduces the homomorphism from G to S8’ and the 
homomorphism from G to S12’. Finally, this paper strictly 
proves that all similar effects can be achieved if one effect 
is achieved within one reference frame through effect sys-
tem, and apply this property in proving the key facts for 
analyzing valid configurations.
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