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Abstract:

This review analyzes prompt injection attacks in large
language models (LLMs) from 2019 to 2025, addressing
critical security challenges as models like ChatGPT
proliferate across sectors. We synthesize advances
in detection, classification, and mitigation strategies,
proposing a tripartite framework categorizing attacks
by vector (text/image/speech), mechanism (semantic
manipulation, resource exploitation), and impact (data
breaches, privacy theft). Key attack vectors include the
GCG algorithm, DAN jailbreaks, and resource-exhaustion
tactics (e.g., Engorgio). Current defenses are evaluated
for efficacy, highlighting scalability gaps and trade-
offs between security and model utility. Future priorities
include adaptive defense systems leveraging reinforcement
learning, interdisciplinary collaboration to address ethical-
technical intersections, and open threat intelligence
networks for proactive vulnerability management. This
work equips researchers and practitioners with actionable
strategies to secure LLM ecosystems against evolving
adversarial threats.
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1. Introduction

1.1 Research Context

reaching 500M+ users by 2024. However, expanding
capabilities have intensified security risks, notably
prompt injection attacks—now transitioning from
theoretical vulnerabilities to systemic threats. Critical

The 2022 launch of ChatGPT catalyzed large lan-  jincidents include:
guage model (LLM) adoption across industries,
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- Bing Chat Indirect Injection (2023): 100,000+ records
leaked via poisoned web comments (Fu et al., USENIX
2024).

- GPT-4 ASCII Art Jailbreak (2024): 73% filter bypass
success (ArtPrompt, arXiv 2024).

- Engorgio Resource Attack (2025): 13x cost inflation via
response manipulation (Dong et al., ICLR 2025).

1.2 Security and Regulatory Crisis

Prompt injection attacks constitute 35% of LLM secu-
rity incidents, causing $1.2B+ losses (OWASP, 2023).
Regulatory responses, like the EU’s €23M penalty for a
jailbreak-induced medical misdiagnosis (2024), highlight
operational risks. Despite advances (e.g., GCG adversarial
training), gaps persist in systematizing attack patterns and
scalable defenses (Zou et al., arXiv 2023).

1.3 Literature Scope

We analyze peer-reviewed studies (NeurIPS, ICLR, USE-
NIX: 2019-2025), industry reports (OpenAl, Anthropic),
and open-source tools (Hugging Face’s RoBERTa). Se-
lection prioritizes reproducibility (e.g., Vicuna-13B at-

tack benchmarks), technical rigor, and coverage of open/
closed-source models (LLaMA-2, GPT-4).

1.4 Analytical Framework

A multi-dimensional framework evaluates:

1. Attack Vectors: Carrier (text/image/speech), target (con-
tent/resource), automation.

2. Defense Layers: Rule-based filtering, security fine-tun-
ing (cost-effectiveness trade-offs).

3. Evaluation Metrics: Attack success rate (ASR), false
positive rate (FPR).

4. Policy Dynamics: EU Al Act compliance, vendor re-
sponse logs.

1.5 Key Contributions and Challenges

Seminal works include GCG optimization (Zou et al.,
2023), RLHF alignment (Bai et al., 2022), and Engorgio
attacks (Dong et al., 2025). Critical challenges:

- Over-Defense: GPT-4’s 18% creative output decline
post-security tuning.

- Detection Gaps: <40% efficacy for low-resource lan-
guages (e.g., Maori).



Dean&Francis

QINGTIAN WANG

Prefix Injection (GCG, Style
Obfuscation)

Direct Attacks

Jailbreak Attacks (DAN, Role-
Playing)

Data Poisoning (Web

Comments, PDF

Attack Techniques Steganography)

Dimension

Indirect Attacks

Multimodal Attacks (ASCII
Art, Voice Commands)

Resource Exhaustion Attacks Engorgio Inference Bloat

Rule Filtering (Keyword
Blacklists)

Input Layer Protection

Semantic Analysis (ROBERTa,
BGE)

Safety Alignment (RLHF,

RLAIF)

Defense Mechanisms

Dimension Model Layer Hardening

Knowledge Unlearning
(WMDP, CUT)

Comprehensive Logical

Framework

Dynamic Monitoring
(Perplexity Threshold)

Output Layer Control

1
1
1

Structured Output (StruQ)

Quantitative Metrics (ASR,
FPR, Perplexity)

Evaluation System Benchmark Tests
Dimension (JailTrackBench, WMDP)

Industrial Deployment
Bottlenecks (Compute
Overhead, UX)

Vendor Responses (OpenAl
Patches, Anthropic Red
Teaming)

Community
Countermeasures (DAN
Iterations, Automated Tools)

Dynamic Adversarial
Dimension

Policy Coordination (EU Al
Act, Compliance
Requirements)

Figure 1 Comprehensive Logical Framework for Attack Techniques, Defense Mechanisms,
and Evaluation Systems in Large Language Models
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2. Prompt Injection Attacks: Classifi-
cation and Evolution

2.1 Definition and Core Characteristics

Prompt injection attacks exploit linguistic vulnerabilities
in LLMs, manipulating inputs to bypass safety protocols
without altering model parameters. These attacks en-
able content breaches, privacy violations, and resource
exploitation (OWASP, 2023). Distinct from adversarial
examples or backdoors, they operate during inference via
semantic obfuscation, achieving 65% cross-model trans-
ferability (Zou et al., 2023). Key traits include:

- Concealment: Multimodal evasion (e.g., ASCII art; Art-
Prompt, 2024).

- Automation: GCG algorithm enables scalable adversarial
prompt generation.

- Target Diversity: Span content manipulation, resource
exhaustion (Engorgio: 8x API cost inflation; Dong et al.,
2025), and supply chain attacks.

2.2 Attack Taxonomy

Direct Attacks:

- Prefix Injection: GCG adversarial suffixes achieve 88%
success (Zou et al., 2023).

- Jailbreaks: DAN iterations exploit logical gaps (37.6%
success; Liu et al., 2024).

Indirect Attacks:

- Data Poisoning: Web Markdown Injection leaks sensi-
tive data via manipulated content (Fu et al., 2024).

- Multimodal Bypasses: Voice command hijacking via ul-
trasonic frequencies (Deng et al., 2024).

Resource Exploitation:

- Engorgio: Forces long-form responses, overloading
computational clusters (Dong et al., 2025).

2.3 Evolutionary Trajectory (2019-2025)

1. Exploration (2019-2021): Manual prompts (<30% suc-
cess); keyword-based defenses.

2. Outbreak (2022-2023): GCG automation enables
black-box attacks on GPT-4.

3. Complexity (2024-2025): Multimodal integration
(voice/image) and systemic resource targeting.

Open vs. Closed-Source Vulnerabilities:

- Open-Source: Adversarial optimization via model trans-
parency (LLaMA-2).

- Closed-Source: API reverse engineering bypasses secu-
rity layers (GPT-4).

Defense Implications:

- Layered Protections: Integrate input sanitization, dynam-
ic monitoring, and output validation.

- Cross-Modal Security: Address gaps in low-resource
language detection (<40% efficacy).

3. Defense Mechanisms: Paradigms,
Evaluation, and Limitations

As large language models (LLMs) are increasingly de-
ployed across industries, defending against prompt injec-
tion attacks has become a critical focus in both academic
and industrial research. Defense technologies are typically
categorized into three levels: input layer protection, model
layer fortification, and output layer control. Each strategy
offers distinct advantages and challenges, with varying
effectiveness depending on the attack type and application
context.

3.1 Defense Paradigms and Technical Compari-
son

3.1.1 Input Layer Protection

Input layer protection prevents malicious prompts from
being processed by the model. Common methods include
rule-based filtering and semantic analysis.

- Rule-Based Filtering: Utilizes keyword blacklists and
regular expressions to detect harmful prompts.

o Advantages: Simple implementation, low cost, effective
against known threats.

o Disadvantages: Ineffective against obfuscated attacks
and prone to high false positive rates, especially in
open-domain models.

o Example: Table 3-1 compares false positive rates for
RoBERTa and BGE models, showing the impact on user
experience.

- Semantic Analysis: Leverages contextual understanding
to identify malicious content.

o Advantages: Effective against sophisticated attacks.

o Disadvantages: High computational cost and potential
for missed malicious intent.

3.1.2 Model Layer Fortification

Model layer fortification enhances defenses through train-
ing and fine-tuning.

- Safety Alignment: Fine-tunes the model to align with
ethical standards, improving rejection of harmful prompts.
o Advantages: Enhances ethical compliance and model
behavior.

o Disadvantages: High training costs and reduced genera-
tive capabilities.

o Alternative: Reinforcement learning with Al feedback
(RLAIF) can reduce manual labeling but may introduce
bias.

- Knowledge Forgetting: Reduces attack surfaces by eras-



ing sensitive data.

o Advantages: Mitigates model leakage risks.

o Disadvantages: May degrade performance, particularly
in knowledge-heavy tasks.

3.1.3 Output Layer Control

Output layer control ensures the model generates safe
content.

- Dynamic Monitoring: Real-time monitoring intercepts
harmful content based on perplexity thresholds.

o Advantages: Prevents harmful content generation in re-
al-time.

o Disadvantages: High computational cost and potential
false positives.

- Structured Output: Forces the model to generate content
in predefined formats (e.g., JSON).

o Advantages: Enhances content control in high-stakes
applications like medical diagnoses.

o Disadvantages: Reduces creativity and may introduce
compatibility issues.

3.2 Quantitative Evaluation of Defense Effec-
tiveness

Evaluating the effectiveness of defense mechanisms is
essential for both research and practical deployment. This
section reviews benchmark comparisons, attack coverage,
and challenges related to computational overhead and user
experience.

3.2.1 Evaluation Benchmarks

Standardized benchmarks, such as JailTrackBench, enable
the comparative evaluation of defense mechanisms.

- Advantages: Provides reproducible standards.

- Disadvantages: Requires periodic updates to stay rele-
vant, may miss subtle attack variations.

3.2.2 Attack Coverage: Open-Source Tools Compari-
son

Attack coverage measures how many attacks a defense
mechanism can block. Notable tools include JAILJUDGE
and GuardShield.

- JAILJUDGE: Monitors real-time input and output for
malicious content, covering 85% of known attacks but
struggling with complex adversarial attacks.

- GuardShield: Employs dynamic monitoring and rule-
based filtering, with a 92% attack coverage rate. However,
it is less effective against GAN-based attacks, leading to
higher false positive rates.

Comparison: GuardShield offers better attack coverage
but introduces delays and computational costs. JAIL-
JUDGE is more adaptable but provides lower coverage.
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3.2.3 Industrial Deployment Bottlenecks

In industrial applications, defense mechanisms face chal-
lenges related to computational overhead and user experi-
ence.

- Computational Overhead: Defense mechanisms, espe-
cially dynamic monitoring, increase GPU utilization by
15%-30%, raising latency and hardware demands, espe-
cially in resource-limited environments.

- User Experience: Aggressive strategies, like strict rule-
based filtering, result in high false positives, impacting
user satisfaction by 22% in conversational Al systems (Li
et al., 2023).

3.3 Limitations and Improvement Suggestions
for Defense Mechanisms

Despite progress, current defenses still face limitations,
especially against evolving, complex attacks. This section
identifies limitations and suggests improvements.

3.3.1 Limitations of Rule-Based Filtering

Rule-based methods struggle with high false positives and
adaptability to new attack strategies.

- Improvement: Integrate adaptive, context-sensitive fil-
tering and semantic analysis to reduce false positives.

3.3.2 Limitations of Model-Level Defenses

Model defenses, like adversarial training, require signifi-
cant computational resources and lack transferability.
- Improvement: Use lightweight optimization algorithms
and cross-domain training to improve generalization.

3.3.3 Limitations of Output Layer Control

Dynamic monitoring can introduce latency and reduce
content quality.

- Improvement: Optimize algorithms, use hardware accel-
eration, and design flexible controls to balance security
and content quality.

3.3.4 Comprehensive Issues with Defense Mechanisms

Current defenses are often isolated, creating vulnerabili-
ties when individual mechanisms are bypassed.

- Improvement: Develop multi-layered defense systems
that combine input filtering, model fortification, and out-
put control for a synergistic effect.

3.3.5 Adaptability of Defense Mechanisms

Existing defenses are designed for fixed attack types and
struggle to adapt to evolving strategies.

- Improvement: Research adaptive defense systems using
reinforcement learning and enhance defenses against mul-
timodal attacks.
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Table 3-1 Comparison of Defense Technologies for Detecting Prompt Injection Attacks in Large Language

Models
Defense Technolo- False Positive
Method Type Remarks
gy Rate
. Susceptible to attacks involving synonym replacement and syntac-
Rule-based Filter- . . . .. . . . .
Keyword Blacklist High tic reorganization, leading to a higher false interception rate, espe-

ing

cially in open-domain conversations.

Rule-based Filter- . .
. N Format Regex Detection | Medium

Effective in detecting abnormal text formats, but false positives

Detection

ing may still occur.

Semantic Analysis RoB'ERTa Binary Classi- 0.08% F 1=9.92, with high sefn}antic understanding ability, effectively
fication Model identifies potential malicious content.

Semantic Analysis BGE Semantic Similarity 0.10% Uses deep semantic analysis to detect by calculating the similarity

between the input and known malicious content.

4. Industry Practices, Policy Challeng-
es, and Future Directions

4.1 Case Studies of Offensive and Defensive
Practices

Large language models (LLMs) face security risks from
prompt injection attacks, prompting industry leaders to
adopt offensive and defensive strategies.

4.1.1 OpenAl: Moderation API Vulnerability

OpenAI’s GPT models encountered vulnerabilities where
ASCII-based prompt injections bypassed the Moderation
API. Attackers inserted non-printable characters to evade
detection. OpenAl enhanced preprocessing pipelines with
non-printable character filters, though balancing detection
robustness with real-time performance remains unre-
solved.

4.1.2 Baidu ERNIE: Composite Risk Assessment

Baidu’s ERNIE employs a multi-tiered framework com-
bining rule-based detection, semantic analysis, and behav-
ior monitoring. A neural network-driven token confusion
detector identifies malicious inputs in multi-turn dia-
logues, improving adaptability to evolving attack patterns.

4.1.3 Anthropic: Constitutional AI and Automated Red
Teaming

Anthropic integrates ethical guidelines via Constitutional
Al, using reinforcement learning to align outputs with
safety principles. Automated red teaming simulates adver-
sarial attacks, enabling iterative vulnerability identifica-
tion and mitigation.

4.2 Policy and Ethical Challenges
4.2.1 EU AI Act Compliance

The EU AI Act mandates rigorous security protocols for
high-risk LLMs, including prompt injection defenses, an-
ti-manipulation safeguards, and third-party audits. Com-
pliance requires transparent documentation of mitigation
strategies.

4.2.2 Accountability Frameworks

Under GDPR, developers bear liability for data breaches
caused by attacks (e.g., unauthorized data extraction). Le-
gal ambiguity persists in attributing responsibility for fi-
nancial or reputational losses, necessitating sector-specific
regulatory clarity.

4.3 Future Research Directions

4.3.1 Adaptive Defense via Reinforcement Learning

Dynamic adversarial training using reinforcement learn-
ing (RL) can enable models to autonomously optimize de-
fenses through simulated attacker interactions, enhancing
resilience against novel threats.

4.3.2 Cognitive Science-Inspired Defense Modeling

Integrating cognitive behavioral models can simulate ad-
versarial decision-making patterns, improving detection of
socially engineered prompts through human-like reason-
ing simulations.

4.3.3 Collaborative Defense Ecosystems
Open databases (e.g., expanded OWASP LLM Top 10)
and cross-industry partnerships are critical to standardize

attack taxonomies, share mitigation strategies, and accel-
erate robust defense frameworks.



5. Conclusion

5.1 Key Findings

Prompt injection attacks exploit linguistic vulnerabilities
in LLMs, manipulating inputs to bypass safeguards via
semantic obfuscation, multimodal vectors, and resource
exploitation. Current defenses—while advancing in de-
tection and alignment—face critical limitations: adaptive
threats outpace static mechanisms, security tuning de-
grades generative capabilities (e.g., GPT-4’s 18% creativi-
ty loss), and low-resource language gaps persist.

5.2 Strategic Imperatives

1. Adaptive Defenses: Reinforcement learning-driven ad-
versarial training enables dynamic response to evolving
attack patterns.

2. Interdisciplinary Frameworks: Integrate cognitive sci-
ence to model adversarial intent and improve detection of
socially engineered prompts.

3. Collaborative Ecosystems: Expand open repositories
(e.g., OWASP LLM Top 10) for cross-sector threat intelli-
gence sharing.

4. Quantum-Resilient Security: Preempt risks from quan-
tum computing to encryption and model integrity.

5.3 Sociotechnical Impact

Secure LLM deployment is pivotal for high-stakes sec-
tors like healthcare and finance, requiring defenses that
balance ethical compliance with functional utility. Future
research must prioritize neural-symbolic architectures and
few-shot learning to scale protections without stifling in-
novation.
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