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Abstract:

Speech Emotion Recognition (SER) is a core research
direction in affective computing and human-computer
interaction, with its primary challenge lying in effectively
fusing complementary information from speech signals
and textual content. This study proposes a dynamic
multimodal fusion model based on Decoding-enhanced
BERT (DeBERTa) and Wav2Vec2.0. By leveraging
bidirectional LSTM to model audio temporal features,
fine-tuning DeBERTa to optimize text representations,
and incorporating a cross-modal attention mechanism
for feature alignment, the model significantly enhances
emotion classification performance. Experiments on the
IEMOCAP dataset demonstrate that the improved model
achieves an accuracy of 83.5% on the test set, representing
a 19.1% improvement over baseline models. This research
provides a novel technical framework for multimodal
emotion understanding in complex scenarios.

Keywords: Speech emotion recognition, Multimodal fu-
sion, Temporal modeling, Cross-modal attention, DeBER-
Ta

1. Introduction

modality often leads to misclassification. Recent
advancements in multimodal fusion techniques have

Emotion recognition is a critical technology for ar-
tificial intelligence systems to comprehend human
intent. Traditional unimodal approaches (e.g., speech
spectrogram-based or bag-of-words text models) are
limited by information fragmentation and struggle to
capture the complexity of emotional expression. For
instance, anger may manifest through high-pitched
speech and negative text, but relying on a single

gained prominence, yet two major bottlenecks per-
sist:

| Coarse-grained feature extraction: Audio features
are often simplified to static statistics (e.g., MFCC
means), neglecting temporal dependencies, while text
features heavily rely on pre-trained embeddings with
limited task adaptability.

1 Coarse-grained feature extraction: Audio fea-

1



Dean&Francis

ISSN 2959-6157

tures are often simplified to static statistics (e.g., MFCC
means), neglecting temporal dependencies, while text fea-
tures heavily rely on pre-trained embeddings with limited
task adaptability.

To address these challenges, this study proposes three in-
novations:

1 Temporal modeling: A bidirectional LSTM captures dy-
namic patterns in MFCC features (Equation 1), replacing

traditional mean pooling.

1 Temporal modeling: A bidirectional LSTM captures dy-
namic patterns in MFCC features (Equation 1), replacing
traditional mean pooling.

|1 Cross-modal interaction: A multimodal Transformer
attention layer enables fine-grained alignment of speech-
text features (Figure 1).
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Figure 1 Model Architecture Diagram

Experiments demonstrate that the aforementioned im-
provements significantly enhance the model’s capability
to capture complex emotional patterns, particularly in dis-
tinguishing ambiguous classes such as “excitement” and
“happiness.” This work provides theoretical and technical
references for algorithmic design in multimodal affective
computing.

2. Literature Review

2.1 Evolution of Speech Emotion Recognition
Techniques

Early studies relied on handcrafted feature engineering.
For example, Bhangale et al. [15] achieved 93.1% accu-
racy on the EMODB dataset by combining MFCCs with
deep convolutional networks (DCNNs), but their feature
generalization was limited by fixed templates. Wav-
2Vec2.0 [3] overcame data dependency through self-su-
pervised learning, yet its unimodal performance remained
at 45.46% (Table 1), highlighting the informational in-
completeness of pure speech modalities.

In recent years, temporal modeling has become pivotal in
audio analysis. Long Short-Term Memory (LSTM) net-
works have been used to capture long-term dependencies
in speech signals [18], but their computational efficiency
hinders real-time applications. This study adopts a bidi-
rectional LSTM combined with hierarchical pooling to
reduce computational overhead while preserving temporal
precision.

2.2 Advances in Text Sentiment Analysis Mod-
els

Pretrained language models have significantly advanced
text sentiment analysis. BERT [1] achieved contextual
modeling via bidirectional Transformers, but hierarchi-
cal emotion analysis in conversational scenarios requires
further refinement. Emile et al. [10] proposed a hierarchi-
cal BERT variant, improving accuracy to 45.0% on the
IEMOCAP dataset. DeBERTa [2] introduced a disentan-
gled attention mechanism, optimizing semantic represen-
tations by decoupling content and positional embeddings,
outperforming RoBERTa by 1.2% on the GLUE bench-
mark. Our study leverages DeBERTa V3’s gradient-dis-
entangled strategy to mitigate the adaptation gap between
text features and downstream tasks.

2.3 Comparison of Multimodal Fusion Methods

Multimodal fusion approaches can be categorized into
three types:

1 Early Fusion: Yoon et al. [9] concatenated BLSTM text
features with DCNN speech features, achieving 91.2%
accuracy but failing to address modality heterogeneity.

1 Late Fusion: COGMEN [19] weighted multimodal de-
cisions via graph neural networks, but its computational
complexity limited real-time applicability.

| Intermediate Fusion: The cross-modal attention mech-
anism proposed in this study belongs to this category,
enabling dynamic alignment through feature-level interac-
tion while balancing efficiency and precision.



3. Methodology

3.1 Overall Architecture

The model comprises three core modules(Figure 1):

1 Audio Branch: MFCC features are processed by a bidi-
rectional LSTM to extract temporal representations, with
an output dimension of 256.

1 Text Branch: DeBERTa V3 is fine-tuned to generate
768-dimensional dynamic embeddings, which are com-
pressed to 256 dimensions via a fully connected layer.

1 Fusion Module: An 8-head cross-modal attention layer
aligns speech-text features, followed by a two-layer Mul-
tilayer Perceptron (MLP) classifier.

3.2 Audio Temporal Modeling

Traditional mean pooling loses temporal information in
MFCC features. This study employs a bidirectional LSTM
to capture dynamic patterns:

B = LSTM(x,.h,_,) (1)
where x, is the MFCC feature of the ¢ frame, and 4, is the

hidden state. Global representation is obtained via tempo-
ral average pooling.

3.3 Text Dynamic Representation Optimization

DeBERTa V3 optimizes embedding consistency between
pretraining and fine-tuning stages using a Gradient-Disen-
tangled Embedding Sharing (GDES) strategy:

EIIL’W = Epretra[n+ AE (2)
where AE is a learnable embedding residual. Experiments
show that GDES improves the F1-score of the text branch

by 4.2%.
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3.4 Cross-Modal Attention Mechanism

Let audio features 4 € R™“and text features T e R*“, The
cross-modal attention is computed as:

T
Attention(Q,K,V) = softmax[ oK j v )

Jd
Where Q=AW,,K =TW,,V =TW,are projection matri-
ces. This mechanism enables the model to dynamically
focus on emotion-relevant cross-modal cues.

4. Experimental Design

4.1 Dataset and Preprocessing

Experiments are conducted on the [EMOCAP multimodal
database [4], filtered for six high-frequency emotions (an-
ger, frustration, neutral, sadness, excitement, happiness).
Preprocessing includes:

1 Audio processing: 16kHz sampling, 40-dimensional
MFCC extraction, truncation to 10% length for computa-
tional balance.

1 Text processing: Tokenization padded to 128 words, en-
coded using DeBERTa Tokenizer.

1 Data splitting: 8:2 random train-validation split with
fixed random seeds for reproducibility.

4.2 Training Details

1 Optimizer: Layer-wise AdamW (BERT layers: 2e-5 ,
others: 1e-4).

1 Regularization: Dropout rate 0.3, gradient clipping
threshold 1.0.

1 Hardware: NVIDIA P5000 GPU, batch size 64.

4.3 Performance Comparison

Table 1 Performance comparison of six mainstream methods on the IEMOCAP dataset

Model Accuracy F1-score Params (M)
BLSTM+DCNNJ9] 64.78% 62.1% 12.4

Wav2Vec2.0[3] 45.46% 42.3% 94.4

DeBERTa V3[12] 63.21% 60.8% 44.0

COGMEN[19] 78.9% 76.5% 28.7

Baseline (Mean Pooling + Static BERT) 64.4% 61.2% 18.3

Ours 83.5% 82.1% 27.6

Key Findings: eters by 3.9% compared to COGMEN while achieving

1 Modality complementarity: Unimodal models (Wav-
2Vec2.0, DeBERTa) underperform multimodal methods,
validating the synergy between speech and text.

1 Dynamic fusion superiority: Our model reduces param-

a 4.6% accuracy gain, demonstrating the efficiency of
cross-modal attention.

1 Ambiguous class distinction: The F1-score for “excite-
ment” vs. “happiness” reaches 79.8%, a 21.3% improve-
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ment over the baseline, proving temporal modeling cap-
tures subtle emotional differences.

4.4 Ablation Study

Table 2 Ablation study quantifying contributions of each improvement

Configuration Accuracy F1-score
Baseline 64.4% 61.2%
+LSTM Temporal Modeling 71.2% 68.5%
+ DeBERTa Fine-tuning 76.8% 74.1%
+Cross-Modal Attention 83.5% 82.1%

Conclusions:

1 Temporal modeling: Bidirectional LSTM improves ac-
curacy by 6.8%, highlighting the importance of MFCC
dynamics.

1 Text fine-tuning: DeBERTa fine-tuning adds a 5.6% gain,

validating task-adaptive representations.
1 Text fine-tuning: DeBERTa fine-tuning adds a 5.6% gain,
validating task-adaptive representations.

4.5 Computational Efficiency Analysis

Table 3 Inference speed tested on NVIDIA P5000 GPU

Model Inference Time (ms/sample) GPU Memory (GB)
COGMEN[19] 38.2 4.7
Ours 22.6 3.1

Efficiency optimizations include:

1 Hierarchical pooling: Temporal average pooling reduces
subsequent computation.

| Parameter sharing: Key-value projection matrices reuse
text branch parameters.

1 Lightweight classifier: Two-layer MLP replaces tradi-

tional 3-5 layer structures.

5. Discussion

5.1 Overfitting Analysis

Table 4 Key training metrics (recorded every S epochs)

Epoch Train Loss Train Acc Val Loss Val Acc Overfit Ratio (Train/Val)
5 0.66 79.7% 0.81 74.2% 1.23
10 0.30 91.2% 0.75 80.5% 1.13
15 0.16 94.9% 0.69 85.1% 1.12
20 0.11 96.5% 0.72 87.2% 1.11

Training dynamics:

1 Loss decline: Training loss drops rapidly from 1.37 to
0.11 (Epoch 20), while validation loss stabilizes at 0.69—
0.72 (Epochs 15-20), indicating effective learning

1 Accuracy growth: Training accuracy rises from
53.9% to 96.5%, with validation accuracy reaching
87.2%. Post-Epoch 15 validation fluctuations (AAc-
c=t1.8%AAcc=+£1.8%) suggest overfitting risks.

1 Overfitting mitigation: The overfit ratio (train/validation
accuracy) decreases from 1.23 to 1.11, showing partial

success of regularization (Dropout=0.3, gradient clipping).
Despite 96.5% training accuracy (Table 5), validation and
test accuracies drop to 87.2% and 83.5%, respectively, in-
dicating overfitting. Potential causes include:

1 Overfitting mitigation: The overfit ratio (train/validation
accuracy) decreases from 1.23 to 1.11, showing partial
success of regularization (Dropout=0.3, gradient clipping).
1 Modality noise: Environmental noise in speech and tran-
scription errors disrupt feature alignment.

1 Modality noise: Environmental noise in speech and tran-



scription errors disrupt feature alignment.

Mitigation strategies:

1 Introduce contrastive learning loss to constrain feature
space distributions.

1 Apply data augmentation (e.g., speech noise injection,
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text synonym replacement).
1 Add modality-specific dropout layers to randomly mask
single-modality inputs.

5.2 Cross-Modal Attention Visualization

Table S Cross-modal attention weight distribution (example: “anger” class)

able”)

Modality Key Region Avg.Attention Weight | Semantic Relevance Analysis
. High-energy regions correlate with rapid pitch varia-
Speech High-frequency band (>4 kHz) 0.67 i & gy res s PIEP v
ions.
Negative lexicons (e.g., “unbear- Emotionally polarizing words dominate classification
Speech gative fex (e.g. "u 0.58 yP zmgw

decisions.

Cross-Modal Speech peaks < Text exclamation 0.43

marks

Captures consistency in multimodal emotional cues.

Table 5 illustrates the cross-modal attention weight distribution for an “anger” sample, revealing that the model
focuses on:

1 High-frequency speech segments: The >4 kHz band re-
ceives the highest weight (0.67), aligning with acoustic
correlates of vocal tension (Equation 3).

1 Negative text lexicons: Words like “unbearable” achieve
an average weight of 0.58, consistent with emotion lexi-
con annotations (p<0.01).

I Cross-modal alignment: Moderate correlation
(weight=0.43) between speech peaks and text exclamation
marks validates the model’s ability to capture multimodal
emotional consistency.

These findings demonstrate the model’s capacity to au-
tonomously identify emotionally coherent cues beyond
simple feature stacking.

5.3 Practical Application Challenges

Despite superior performance, real-world deployment fac-
es three key challenges:

I Cross-modal alignment: Moderate correlation
(weight=0.43) between speech peaks and text exclamation
marks validates the model’s ability to capture multimodal
emotional consistency.

I Cross-modal alignment: Moderate correlation
(weight=0.43) between speech peaks and text exclamation
marks validates the model’s ability to capture multimodal
emotional consistency.

1 Cross-modal alignment: Moderate correlation
(weight=0.43) between speech peaks and text exclamation
marks validates the model’s ability to capture multimodal
emotional consistency.

6. Conclusions and Future Work

6.1 Conclusions

This study proposes a dynamic feature fusion model for
multimodal speech emotion recognition, with three key
contributions:

| Temporal modeling: Bidirectional LSTM extracts MFCC
dynamics, improving accuracy by 6.8% over mean pool-
ing.

1 Text optimization: DeBERTa V3 fine-tuning boosts the
text branch F1-score by 4.2%.

1 Text optimization: DeBERTa V3 fine-tuning boosts the
text branch F1-score by 4.2%.

Experiments on the [IEMOCAP dataset show an accuracy
of 83.5%, a 19.1% improvement over baselines, with sig-
nificantly lower parameters and computational costs than
comparable methods.

6.2 Future Work

Future research will focus on:

| Text optimization: DeBERTa V3 fine-tuning boosts the
text branch F1-score by 4.2%.

1 Lightweight design: Knowledge distillation and neural
architecture search (NAS) for edge device compatibility.

1 Multimodal extension: Integration of visual modalities
(e.g., facial expressions) for holistic emotion analysis.
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