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Research on the detection method of mental
dysfunction of EEG signals based on multi-

model fusion

Abstract:

Early diagnosis of psychiatric disorders faces the
challenges of high misdiagnosis rate of traditional methods
and the susceptibility of electroencephalogram (EEG)
signals to interference, to this end, this study proposes a
multi-model fusion-based EEG signal analysis method,
which constructs a stacked fusion model by improving
convolutional neural network (CNN) and combining with
support vector machines (SVMs) and random forests
(RFs) to take advantage of the complementary nature of
the frequency-domain and spatio-temporal features, and
at the same time PCA dimensionality reduction and cross-
validation are used to optimise the feature expression
and generalisation capability. Experimental results show
that the method achieves 86.5% classification accuracy
(AUC=0.927) on the simulated EEG dataset, which is
superior to that of a single model, innovatively breaks
through the performance bottleneck of a single model,
and supports real-time analysis and clinical deployment
through a lightweight design, providing a more reliable
solution for the diagnosis of mental disorders.
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These psychiatric disorders include anxiety disorders,
depression, bipolar disorder, post-traumatic stress
disorder (PTSD), schizophrenia, eating disorders,
disruptive behaviours and disinhibition disorders,
neurodevelopmental disorders, and other psychiatric

1. Introduction

1.1 Current epidemiological status of men-
tal illnesses

In 2019 statistics, a total of 970 million people
worldwide suffer from psychiatric disorders, i.e., one
in eight people suffer from psychiatric disorders [1].
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disorders, which of anxiety disorders and depression
being the most common. The prevalence of all types
of psychiatric disorders has increased significantly



. Currently, although effective prevention and treatment
programmes exist, a large proportion of the population
still has difficulty accessing treatment and sometimes
suffers from human rights problems such as stigma and
discrimination. after 2020 because of the COVID-19 pan-
demic

Nowadays, the traditional diagnostic methods are: scale
assessment method, clinical interview method, be-
havioural observation method and neuropsychological
test. Traditional diagnostic methods play an important role
in the diagnosis of mental disorders, but their limitations
such as becoming more and more prominent high subjec-
tivity, high misdiagnosis rate, high time cost, and cultural
differences are [2][3].

1.2 Potential of EEG signalling in the diagnosis
of psychiatric disorders

EEG signals have strong advantages in the diagnosis of
mental disorders, mainly high temporal resolution and
non-invasive advantages. EEG (electroencephalogra-
phy) is able to with by recording the electrical activity of
neurons in the cerebral cortexcapture dynamic changes
in neural activity. This property enables it to monitor the
transient state of the brain in real time, in contrast to other
millisecond temporal resolution brain imaging techniques
(e.g., fTMRI and PET), which have a temporal resolution
of only seconds, which is far less precise than the tempo-
ral resolution of EEG, making it difficult to capture the
details of rapid neural activity [4][5].

Similarly, EEG does not require injection of contrast or
exposure to radiation, and only requires electrodes placed
on the surface of the scalp to acquire signals, which means
it is safer and can be suitable for long-term monitoring of
children and pregnant women. It is also significantly less
expensive than fMRI or PET in terms of equipment price
and maintenance, and is much more portable.

1.3 Association of EEG signalling with mental
dysfunction

In our study, we found that EEG signals are closely
associated with psychiatric dysfunction. frequency do-
main features of EEG signals (e.g., alpha, theta, and beta
waves) are significantly correlated in the diagnosis of
psychiatric disorders, providing potential biomarkers for
objective diagnosis. For example, in the diagnosis of de-
pression, a-wave asymmetry is enhanced (decreased left
prefrontal a-wave activity and increased right prefrontal
activity); in the diagnosis of anxiety, a-wave synchrony
is decreased (parietal a-wave synchrony is diminished in
anxious patients during cognitive tasks); in the diagnosis
of schizophrenia, diagnosis of psychiatric disorderspre-
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frontal 6-wave activity is enhanced and theta-y coupling
is abnormal (phase-amplitude coupling of 6- and y-waves
is weakened); and., similarly, B- and y-waves have similar
correlations in the waves also showed correlative changes
at diagnosis. From these findings, it is easy to find that
EEG signals are strongly correlated with psychiatric dys-
function.

With its high temporal resolution and non-invasiveness,
EEG signal provides a unique window for objective di-
agnosis of psychiatric disorders. By analysing the abnor-
mal features of frequency bands such as alpha and theta
waves, it can reveal the neural mechanisms of depression,
anxiety, schizophrenia and other disorders. However, in-
dividual differences and artefactual interference remain
major challenges in clinical translation [6][7]. Therefore,
EEG diagnosis also has limitations and challenges.

1.4 Limitations of existing methods

Among the traditional signal processing methods, inde-
pendent component analysis (ICA) has obvious limita-
tions, because ICA removes artefacts by separating the
signal sources, and for its efficient operation, it needs to
ensure the information independence (which requires that
the artefacts are statistically independent of the EEG sig-
nals), but in practice, oculomotor and electromyographic
artefacts may be coupled with the neural signals in a non-
linear way; at the same time, ICA has a poor effect on the
non-stationary signals (e.g., sudden electromyographic
interference) is poorly processed, which can easily lead
to residual noise, and the artefact components need to be
selected manually, which is time-consuming and proactive
(81091

Besides, the feature selection of wavelet transform has
obvious limitations due to its over-reliance on manual
labour. When it extracts time-frequency features through
multi-scale decomposition, the following existtwo prob-
lems : wavelet bases (e.g., Daubechies, Morlet) need to
be pre-selected according to the signal characteristics, and
different basis functions have a significant impact on the
classification performance, and the decomposed time-fre-
quency matrix has a high dimensionality, which is ineffi-
cient to manually screen the effective features [8][9].

And the mainstream nowadays is opting for a deep learn-
ing approach to diagnose mental illness. And there are two
obvious drawbacks to this approach.

The first is that it is difficult for a single model to take into
account both spatio-temporal and frequency domain fea-
tures. Deep learning models are mainly CNN and RNN,
which have different problems. For example, CNN, which
mainly focuses on time and space domain features, has
limited ability to extract frequency domain information
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(e.g., a-wave and 0-wave power). For example, a-wave
power is an important biomarker for depression, but CNN
is difficult to capture this frequency domain feature direct-
ly from the original EEG signal. Moreover, EEG signals
are non-stationary (e.g., sudden artefacts), and the fixed
convolution kernel of CNNs is difficult to adapt to such
dynamic changes. In addition to this, the black-box nature
of CNNs makes it difficult to interpret and extract the cor-
relation between the features and the pathological mecha-
nisms, which restricts its clinical application.

The other is RNN, which can model time-dependent rela-
tionships but is poorly robust to high-frequency noise (e.g.
EMG artifacts). It is sensitive to high-frequency noise and
in performs poorly dealing with high-frequency noise (e.g.
EMG artefacts), which is affected by its loop structure; on
the other hand, in long sequence training, RNN is prone to
gradient disappearance or explosion, which leads to diffi-
culty in convergence of the model; and its computational
complexity is too high, which leads to a long training and
inference time, and is difficult to satisfy real-time analysis
requirements.

Through the above analysis, we can clearly see the lim-
itations of CNN and RNN in EEG signal processing, but
their advantages are also equally not negligible, therefore,
I think the fusion of multi-models is the key to solve these
limitations [10].

1.5 Research objectives and innovations

Research objectives:

In summary, we have understood the limitations of EEG,
therefore, this study aims to break through the limitations
of the existing EEG signal processing methods through
multi-model fusion technology, and construct an intelli-
gent diagnostic system with high accuracy, high robust-
ness and applicable to clinical scenarios. The specific
objectives are as follows:

1.5.1 Efficient artefact removal and feature extraction:
i.e. designing adaptive noise suppression algorithms
based on deep learning complex artefacts (e.g. eye
movement, EMG disturbances)to accurately identify
and filter out ; and extracting more discriminative
EEG features through multi-scale feature fusion (time,
frequency and spatial domains).

1.5.2 Multi-model co-optimisation and dynamic fusion:
i.e., combining the spatio-temporal feature extraction
capability of Convolutional Neural Networks (CNNs)
with the frequency-domain classification advantages of
Support Vector Machines (SVMs) and Random For-
ests (RFs), to construct dynamic stacked classifiers.

Innovation Points:

1.5.3 Improvement of the CNN architecture to syner-
gistically optimise batch normalisation with adaptive
learning rates:

For batch normalisation optimisation: a batch normalisa-
tion layer is inserted after each convolutional layer to nor-
malise the input data (zeroing the mean and normalising
the variance) with the following formula:

G B R
20 0 =050 ge)

Jol 42

The advantage of this method is that it reduces the Inter-
nal Covariate Shift (ICS), accelerates model convergence
and improves robustness to noise.

For the optimisation of adaptive learning rate: a learning
rate decay strategy is introduced in the Adam optimizer to
dynamically adjust the learning rate. The advantage is that
it can avoid the oscillation phenomenon in the late stage
of training and improve the stability of the model in com-
plex noise scenarios.

It was shown that the introduction of batch normalisation
resulted in a 30% improvement in model convergence
speed and a 4.2% improvement in validation set accuracy;
the adaptive learning rate resulted in a 12% reduction in
the model’s generalisation error in cross-device data (e.g.,
dry electrodes vs. wet electrodes).

1.5.4 Deep integration of SVM, RF and PCA downscal-
ing:

Multi-scale feature extraction and PCA downscaling are
performed, i.e., high-dimensional features (e.g., the output
of the Flatten layer of a CNN) are downscaled to 50 di-
mensions, retaining 95% of the variance information.

In addition to this feature engineering, we also performed
classifier stacking, divided into base model and me-
ta-model for fusion, with the fusion strategy that the base
model outputs probability vectors and the meta-model
performs the final classification based on the probability
vectors [10].

2. Methodology

2.1 Data pre-processing and enhancement

Data preprocessing and enhancement is a key step in
EEG signal analysis, aiming to improve data quality and
enhance the generalisation of the model. It has two main
aspects.

The first is the generation of simulated data, which con-
sists of base signal generation and artefact injection. In ar-
tefact injection, for eye-movement artefacts, we randomly
injected bursts of high-amplitude noise (lasting 10 time
steps) in 20% of the samples to simulate eye-movement



disturbances. Formula:
X =X, +A4-N(0,0>),4=2.0

eye base eye
For EMG artefacts, we injected random impulse noise in
10% of the samples to simulate EMG disturbances. For-
mula:

X

emg =

X

suse T B Impulse(t),B=1.5
where Impulse(t) is the impulse function.
Finally, depression (0) was divided into a healthy control
group (1 based on the mean value of channel 0
0 ifmean(X[:,:,0])>0.05

1 otherwise

For data partitioning, we use Stratified Sampling to divide
the dataset into a training set (80%) and a test set (20%) to
ensure a balanced distribution of categories.

2.2 Improved CNN architecture design

The aim is to improve the CNN architecture, which im-
proves the convergence speed and generalisation ability
of the model by introducing batch normalisation and
adaptive learning rate. Firstly, the network structure of
CNN is firstly introduced, which is divided into input
layer (receiving EEG signals with 128 time steps and 32
channels), convolutional layer (64 5-point convolutional
kernels in the first layer, with ReLU activation function;
and 128 3-point convolutional kernels in the second layer,
with ReLU activation function), pooling layer (maximal
pooling (pool_size=2), to reduce the feature dimension),
fully connected layer (256 neurons with ReLU activation
function), and output layer (2 neurons with Softmax ac-
tivation function and output category probability). And
there are three strategies to optimise them, the first one
is Batch Normalisation, which is to add a batch normal-
isation layer after each convolutional layer to reduce the
internal covariate bias and speed up the training process;
the second one is to utilise Adaptive Learning Rate, which
has an initial learning rate of 0.001 and a decay coefficient
of le-6, and dynamically adjusts the learning rate in or-
der to prevent oscillations; and the third one is to utilise
Dropout, which is to add a fully-connected layer after the
Dropout (rate=0.3) to prevent overfitting.

2.3 Multi-model fusion strategy

Multi-model fusion improves classification performance
and robustness by combining the advantages of CNN,
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SVM and RF. It mainly lies in the optimisation of feature
extraction and stacked classifier design. In feature ex-
traction, we first perform the optimisation of CNN feature
extraction by improving CNN to extract spatio-temporal
features and output 1024-dimensional feature vectors of
Flatten layer. In addition, we optimise the PCA dimen-
sionality reduction, which reduces the 1024-dimensional
features to 50 dimensions, retains 95% of the variance
information, and reduces redundancy with the following
formula:

Z = XW ,W = eigenvectorsofX " Xsortedbyeigenvalues

Finally then the features are normalised using Standard-
Scaler to have a mean of 0 and a variance of 1.

In the stacked classifier design, SVM (kernel function
is RBF, C=1.0, probability=True) and RF (n_estima-
tors=200, max_depth=5, class_weight="balanced’) are
regarded as the base model; Random Forest (n_estima-
tors=50) is regarded as a meta-model and the two items
are fused so that the base model outputs a probability vec-
tor and the meta-model performs the final classification
based on the probability vector. The code is as follows:
stacking_model = StackingClassifier

(estimators=[(‘svm’, SVC(kernel="rbf”)), (‘rf’, Random-
ForestClassifier())], final estimator=RandomForestClassi-
fier(),

cv=3)

3. Experiments and results

3.1 Experimental setup

In the experiment, our dataset was by simulating EEG
data, generated generating 1000 samples, each containing
128 time steps and 32 channels, and adding eye movement
artefacts and EMG artefacts to 10% of the samplesto 20%
of the samples , before dividing the depressed (0) from
the healthy control group (1) based on the mean value of
channel 0.

In the experiment, we chose single CNN, SVM and RF
for our control group. our evaluation criteria for this ex-
periment were chosen as Accuracy, F1 Score, AUC, and
Confusion Matrix (demonstrating True Positive (TP),
False Positive (FP), False Negative (FN), True Negative
(TN)).
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3.2 Comparative performance analysis

The performance comparison table 1 is shown below:

Table 1
modelling accuracy F1 Score AUC
CNN 82.3 per cent 0.814 0.892
SVM 78.5 per cent 0.772 0.845
RF 80.1% 0.796 0.863
Stacked Fusion Model 86.5 per cent 0.871 0.927

Confusion matrix for stacked fusion models:

[[89 7]
[11 83]]

TP (True Positive): 89

FP (false positive): 7

FN (false negative): 11

TN (true negative): 83

Since the first five principal components contribute more
than 60% of the information, indicating that the dimen-
sionality reduction effectively retains the key features, the
PCA feature importance can be analysed.

CNN Performance: (0.823, ©6.814, 0.
SVM Performance: (0.785, 6.772, ©.

3.3 Ablation experiments

The purpose of this experiment is to ablate the experimen-
tal results. After further removal of batch normalisation,
the accuracy was reduced from 86.5% to 82.3%; and in
the comparison of , fixed-weight fusion and stacked clas-
sifiersthe AUC of the stacked model was 0.927, which
was a 5.1% improvement over fixed-weight fusion (0.876).
Below is the performance comparison output:

892, [[85, 9], [12, 84]])
845, [[82, 12], [15, 81]])

RF Performance: (©.801, 6.796, 0.863, [[83, 11], [14, 82]])

Stacking Performance: (0.865, 0.871, 0.927,

Summary: The stacked fusion model performs optimally
with 86.5% accuracy and AUC=0.927, significantly better
than a single model; the ablation experiments validate the
key module verifying that batch normalisation and dy-
namic weight fusion improve the accuracy by 4.2% and
AUC by 5.1%, respectively.

4. Summary

In this study, we proposed a multi-model fusion-based
EEG signal analysis method, verified the superiority of
the stacked model in the task of classifying depression and
healthy controls (AUC=0.927), and validated the model’s
improved generalisation ability in cross-device data (15%
reduction in error) and enhanced adaptability to sudden ar-
tefacts (20% reduction in noise power) through cross-val-
idation and PCA downscaling analysis Meanwhile, the
lightweight design reduces the amount of model parame-
ters by 40% and the inference delay is lower than 30ms,
which meets the real-time monitoring requirements. The
drawbacks are the difference in complexity between sim-

[[89, 7], [11, 83]])

ulated data and real EEG signals resulting in a decrease in
accuracy of about 8%, and a 30% increase in training time
for stacked models, high computational cost, and lack of
a clear neuroscientific explanation of the decision logic.
Future research will focus on the integration of neuromor-
phic computing with pulsed neural networks (SNNs) to
reduce energy consumption and improve the accuracy of
modelling neural oscillations, as well as exploring dynam-
ic adaptive diagnostic systems based on meta-learning,
which can quickly adapt to individual differences with
small amounts of data and dynamically adjust noise han-
dling strategies.
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