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Machine Learning Approaches for Traffic
Sign Detection: Methods and Challenges

Abstract:

Xuanyu Ren Traffic sign detection (TSD) is a fundamental perceptual
task for intelligent transportation systems and autonomous
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2u020080104@gmail.com variability. This review summarizes how the field has
changed from traditional machine-learning pipelines, such
as SVM or AdaBoost with color/shape features, to modern
deep architectures, such as two-stage R-CNN variants, one-
stage YOLO/SSD families, lightweight models for edge
deployment, and new Transformer-based detectors. This
review sorts of methods into groups, compares them on
major benchmarks, and look at their accuracy, runtime, and
robustness. The analysis demonstrates that deep learning
significantly outperforms conventional methods in terms of
precision and scalability. Nevertheless, a speed-accuracy
trade-off remains, and models trained within a specific
sign system frequently exhibit inadequate generalization to
alternative systems (e.g., India and Germany), highlighting
the necessity for region-specific data or explicit domain
adaptation. Ongoing problems include bad annotations
and long-tail categories. The practical advice is provided
for deploying on embedded platforms and highlights some
promising areas to explore, such as multimodal fusion
(camera + LiDAR), augmentation and adaptation for
changes in weather and lighting, compact architectures
with knowledge distillation, and Transformer pipelines
that are optimized for small objects. The review’s goal is
to give a short, deployment-focused guide for improving
reliable TSD in real-world ITS.
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1. Introduction increasingly autonomous vehicles continues, the

] o ) need for reliable, accurate traffic sign detection (TSD)
As the rise of intelligent transportation systems and 45 also increased. Online implementation of this



method is crucial to guarantee the safety of road users, as
well as enabling real-time decisions for automated driving
environments. TSD enables autonomous vehicles to un-
derstand road regulations, prevent accidents, and comply
with a wide range of rules that vary across different driv-
ing environments.

Nevertheless, there is still significant difficulty in ac-
complishing the robust and real-time detection of traffic
signs. The varying weather and illumination conditions,
distinct traffic signs in different regions, interferences and
complex city backgrounds all make it extremely difficult
for better performance [1]. The early successes of the
traditional computer vision-based techniques such as His-
togram of Oriented Gradients (HOG) with Support Vector
Machines (SVM), or AdaBoost classifiers were promising
[2]. However, they have not been very useful in practice
since (1) these can’t be applied across a large variety of
situations and scale up from zero.

CNN architecture is a game changer for TSD systems in
the time of deep learning. More powerful architectures
such as Faster R-CNN, SSD [3], YOLOVS5 [4] and Effi-
cientDet have significantly improved the detection accu-
racy and inference speed, at least for standard datasets
like GTSRB, GTSDB and Tsinghua-Tencent 100K. More
recently, transformer-based models like DETR and Swin
Transformer have pushed the envelope further, enabling
end-to-end detection with richer contextual image fea-
tures and improved interpretability [5]. Promoting traffic
sign detection technology is not only a technical usher in
the old era, as the main motive force does not come from
public security. Research on this year’s fatalities indicated
that integrating sophisticated TSD systems into ADAS
and autonomous driving technology contributes to low-
ering the number of traffic accident deaths. TSD has also
become more feasible in low-resource vehicular environ-
ments thanks to lightweight, real-time models that can be
deployed on embedded edge platforms - such as MobileN-
et and YOLO-Nano.

Nonetheless, several barriers remain to our work. For ex-
ample, well-developed countries will often have a region-
al bias in their traffic signs. This biases all of our training
data, which means it attempts to use these models in
places like India and Southeast Asia, where there are a lot
fewer of those signs by contrast, their performance is easy
to disrupt. Even with the development of sophisticated
detectors, bad weather and low-light conditions is a per-
sistent problem. It is not only to put forward a new idea at
an algorithmic level but also needs a method which deeply
depends on various data source inputs; the regional map-
ping teams should be established all over the world who
can provide high-quality, multi-layer tagging map base.
The goal of this paper is to present an in-depth review of
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machine learning-based approaches for traffic sign detec-
tion, which will serve as a solid basis for both academic
and practice when it comes to working on associated top-
ics.

2. Literature review

2.1 Classical Machine Learning Methods

To the best of our knowledge, there were very few types
of D systems (TSDs) in that era which employed or relied
upon legacy computer vision and machine learning tech-
niques. Classical algorithms, on the other hand, often used
handcrafted features with which they then “soaked” fruit
in machine learning classifiers (like SVM or AdaBoost).
One of the alternate approaches is to use HOG along with
SVM for feature descriptor and classifier. Such combi-
nation of styles works well in other traffic sign detection
domains. As researchers [6] demonstrated that it can be
effectively applied to their multi-view traffic sign localiza-
tion task with simple shape signs. AdaBoost itself (initially
inspired by the Viola-Jones method) combined with it
and at an earlier stage ends up with real-time systems that
however aren’t robust in different lighting and occluding
conditions [7]. For instance, a performance loss is sig-
nificant for the image processing systems using known
techniques under such an adverse environment as smog
or rain/snow has been indicated in reference. This is due
to problems of image distortion, poor contrast or noise.
The traditional feature extraction algorithm is difficult to
stably extract the shape and color of the sign, so it cannot
accurately identify.

These traditional methods are much too sensitive to en-
vironmental conditions. The manually designed features
did not generalize to true scene variations, e.g., motion
blur, partial occlusion, and non-standard sign formats.
These characteristics were hard to achieve with computer
processing. Traditional systems are very strong as long as
a certain limit of simplicity is respected, but ‘decay’ dra-
matically in the presence of real complications.

2.2 Early Deep Learning Models

A key deep-learning early adopter in this context was pro-
posed by [8] They proposed a multi-column deep neural
network (MCDNN) into the German Traffic Sign Recog-
nition Benchmark and outperformed even classical ap-
proaches. The recognition rate of MCDNN that includes
scale, rotation and brightness variations is 99% [9]. It’s
hard to do with your basic model.

The next milestone was the OverFeat mode [10], which
combined classification localization detection into a uni-
fied CNN framework. It was necessary for that work to
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demonstrate that other models of such a type, in principle,
were possible. The experiment of Sermanet and Felzensz-
walb is the base of transfer learning. They also demon-
strated fine-tuning of pre-trained CNNs for traffic sign
datasets.

2.3 Contemporary Deep Learning Architectures

The newest TSD models use better architecture and train-
ing methods to make performance and generalization
better. Today, there are two main types of detectors: re-
gion-based detectors and single-shot detectors.

Faster R-CNN and Mask R-CNN are two region-based
models that are widely used in traffic sign detection
pipelines. They have done very well at localization and
segmentation. For real-time applications, single-shot de-
tectors like YOLO (You Only Look Once) and SSD (Single
Shot Multibox Detector) have become very popular. Red-
mon et al. released YOLOV2 to get competitive accuracy
with much faster inference times. Later, YOLOv3 and
YOLOVS5 were released to make the results even better
[11].

Lightweight models like MobileNet and EfficientDet
make it even easier to deploy on edge devices. Tan et al.
introduced EfficientDet with compound scaling, attaining
high accuracy while minimizing resource usage, rendering
it suitable for resource-limited settings such as ADAS [12].
Carion et al. recently released DETR (Detection Trans-
former), which brought transformers to object detection.
Transformers use global attention mechanisms, which
makes them work better in structured environments with
overlapping signs or occlusions.

2.4 Benchmark Datasets

For evaluating and comparing TSD equipment, it is very
important to have standardized datasets. The German
Traffic Sign Recognition Benchmark (GTSRB) and the
German Traffic Sign Detection Benchmark (GTSDB) are
examples of such benchmark datasets. They have thou-
sands of annotated traffic sign images taken in real-world
German road conditions.

The LISA dataset from the United States has a large vari-
ety of different lighting conditions, scales, and occlusions,
which come in quite handy for cross-regional research.
The Tsinghua-Tencent 100K also has complex urban con-
ditions from Chinese roads: several signs per frame; vari-
ous kinds of signs.

Despite these improvements, many of the datasets that al-
ready exist continue to favor either European or American
signs. Sharma et al. point out that for geographical regions
like India and Southeast Asia, where road conditions (and
so sign formats) differ markedly from those in Western
countries, there are hardly any high-quality annotated

datasets. They argue for an increase in the creation of in-
digenous (regionally specific) datasets in order that overall
model performance might improve [§].

3. Methodology

3.1 Categorization Approach

There are two main types of traffic sign detection meth-
ods: traditional machine learning (ML) techniques and
deep learning-based techniques.

Traditional ML methods use things like color segmenta-
tion, edge detection, and shape descriptors that are made
by hand. These are usually used with classifiers like SVM
or ELM. These systems perform effectively in controlled
settings but encounter challenges with variability in re-
al-world contexts.

Deep learning has largely replaced traditional methods be-
cause it can learn hierarchical features directly from raw
image data. These models are often grouped by architec-
ture into: Two-stage detectors like Faster R-CNN, which
are very accurate but take longer to make predictions;
One-stage detectors like YOLOvS and SSD, which are
known for their real-time performance with little loss of
accuracy; and Transformer-based models like DHPE-DE-
TR, which use attention and position encoding to improve
localization in complex scenes.

This taxonomy helps figure out the best architecture based
on deployment needs like speed, accuracy, or hardware
limitations.

3.2 Performance Metrics

To evaluate TSD systems, a balance between accuracy,
efficiency, and robustness is needed. For example, mean
Average Precision can be used at different IoU thresholds
to measure detection accuracy. Inference Speed is import-
ant for real-time systems like ADAS. Robustness is the
model‘s ability to stay accurate in different situations, like
when there is occlusion, lighting changes, or background
clutter. This can be improved by using techniques like data
augmentation and domain adaptation. In terms of datasets,
public datasets like GTSRB, GTSDB, LISA, and Tsing-
hua-Tencent 100K are often used. However, cross-domain
generalization is still a problem, especially when models
trained on European signs are tested on Indian or Middle
Eastern datasets.

3.3 Model Comparison

To assess the practical efficacy of diverse traffic sign de-
tection models, a comparative analysis as presented in
Table 1 was performed among five representative archi-
tectures. These models are classified based on their type,



backbone architecture, classification accuracy, inference
speed (frames per second), and the datasets used to train
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and test them.

Table 1: Model comparison table used in TSD

Accuracy (%) Type Backbone Accuracy (%) Speed (FPS) Dataset
Fast R-CNN Two-stage VGG16 90+ 10-12 GTSDB
Mask R-CNN Two-stage ResNet-50 95 6-10 GTSRB
Refined Two-stage ResNet-50 97 8 Indian Dataset
Mask RCNN
YOLOVS One-stage CSP-Darknet 96 30 + TT100K
ResNet-based CNN Classifier ResNet-18 99 99 Kaggle Signs

Fast R-CNN and Mask R-CNN are fairly accurate two-
stage detectors, but they are not very fast at making de-
cisions, which makes them less useful for autonomous
driving in real time. Refined Mask R-CNN, which was
made for Indian roads, increases accuracy to 97.08%
while keeping speed low.On the other hand, YOLOVS is
a one-stage detector that strikes a good balance between
speed (30+ FPS) and accuracy (>96%), making it a great
choice for embedded Advanced Driver Assistance Sys-
tems (ADAS). ResNet-based CNN classifiers have the
highest accuracy (99%), but they are usually used for clas-
sification after region proposal, so they can‘t be directly
compared to real-time object detection.

These results show that when choosing a model, it is
essential to think about both the application and the hard-
ware limitations. Two-stage detectors are more accurate,
but one-stage detectors like YOLOVS5 are better for use in
real time.

4. Results

4.1 Comparative analysis based on published
benchmarks

In this section, the results are reported from literature, not
experiments conducted. Modern YOLOVS and YOLOv4
families precede older baselines on widely used bench-
marks like TT100K [13], CCTSDB2021, and GTSDB,
keeping consistency, while still being able to process data
in real time. For instance, TRD-YOLO on TT100K shows
a mAP@0.5 of about 86.5% and a stable frame rate of
about 73 FPS, which shows a good balance between speed
and accuracy for small signs [14]. Different design vari-
ants, like STC-YOLO, put even more emphasis on han-
dling small objects and complex scenes. They also report
higher mAP than vanilla YOLOvSs on TT100K/CCTSDB
settings, which shows that targeted fusion/attention and
anchor re-tuning work best in small-sign regimes. In bad
weather, an Improved YOLOVS made for complicated sit-

uations shows clear gains on CCTSDB2021. This shows
that condition-aware attention and small-object heads can
lead to measurable mAP improvements without a lot of
extra work [15]. In direct comparisons on GTSDB, one-
stage detectors (YOLOvV4/YOLOVS) usually get both a
higher mAP and a much higher FPS than two-stage Fast-
er-R-CNN. This supports the current preference for one-
stage models in real-time driving stacks.

4.2 Models’ performance across datasets and
countries

Regarding the recognition of traffic signs in different
countries, cross-dataset tests show that models trained on
Indian traffic-sign data do worse when tested on GTSDB
(Germany) and vice versa. However, performance im-
proves when models are trained and tested within the
same regional distribution or when augmentation or mix-
ture strategies close the gap. Evidence from surveys also
shows that combining regional data (like mixing Indian
and German sign sets) makes things more stable, but it
doesn‘t completely get rid of cross-country degradation,
especially for rare categories and small objects. These
findings endorse the utilization of region-specific datasets
during training (or explicit domain adaptation) when de-
ployment is aimed at a specific sign system.

4.3 Key findings

Firstly, DL models are better than ML in terms of preci-
sion and applicability. Recent benchmarking suggests that
deep detectors and recognizers (e.g., YOLO and Faster-R-
CNN) have outperformed hand-crafted features and clas-
sical classifiers in terms of accuracy and robustness for
the common traffic sign tasks.

Secondly, region-specific datasets are critical. Empirical
cross-country studies show that there is a substantial drop
in accuracy when the data undergoes a distribution shift,
while training with local or mixed/augmented datasets
leads to more robust predictions.

Finally, the compromise between real-time and accuracy
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is a concern. One-stage YOLO based detectors generally
possess superior speed-accuracy trade-off compared to
two-stage object detectors in road scenes. Furthermore,
inlaid results (e.g., ETSR-YOLO ~108 FPS on Jetson
AGX Xavier) have indicated that fine-tuned small-object
pipelines can reach the real-time requirement on-vehicle
as well as to be accurate.

5. Conclusion

This review investigated how the traffic sign detection
transformed from feature-engineered pipelines to deep
models. It also evaluated such models on benchmarking
datasets as well as in realistic scenarios. Overall, 1-stage
CNN detectors, in particular more recent YOLO versions,
are best for small, crowded and bad-weather scenes be-
cause they have the finest accuracy-throughput trade-off.
“Two-stage models, however, are still good for localiza-
tion but require more processing power. Yet performance
doesn’t look so great: models that work well on one sign
system in one region often do badly on another, and long-
tail categories remain among the most common ways for
you to fail.

Design can also be subject to practical limits. Deployment
is further complicated by devices that punish the speed—
accuracy trade-off. It allows to use lightweight backbones
and placeable head small objects so that it can match
on-vehicle latency, power budgets. Just as important is
the quality of the data: mis-annotations or low-quality
annotations and bias of the regions hinder fair evaluation
and generalization. In the future, Three directions are
followed: (1) to make data and domain strategies more
stronger with region-oriented corpora acquisition as well
as domain adaptation/augmentation; (2) make efficient,
small-object-aware architectures better, including using
Transformer components wisely, without adding too much
overhead; and (3) make reliability better through multi-
modal sensing and standardized robustness testing. These
directions give a deployment-focused way to obtain reli-
able TSD in next-generation ITS and self-driving cars.
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