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Abstract:

Modern financial markets generate high-volume and
high-speed data. Although machine learning has
improved prediction and decision-making, guidelines
for implementation considering costs, governance, and
robustness against regime changes remain limited. This
study comprehensively summarizes how supervised
learning, unsupervised learning, deep learning, ensemble
learning, and reinforcement learning align with the pipeline
of quantitative trading in signal generation, portfolio
construction, execution, and market making. Representative
models, such as support vector machines, gradient boosting
trees, and long short-term memory (LSTM) networks,
are associated with traditional frameworks for allocation,
execution, and inventory management, forming a decision-
making centered approach. A structured review and a
comparative mapping under realistic constraints are used.
Evaluation methods to mitigate leakage and overfitting
are summarized, and backtesting with pre-screening that
explicitly considers trading costs and market impact is
also included. The results reveal complementary strengths:
ensemble trees and support vector machines provide a
robust baseline, sequential models with attention improve
temporal representation, reinforcement learning aligns with
the goals of sequential trading but requires careful reward
design and reliable offline training, and unsupervised tools
reveal patterns that support diversification.
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1. Introduction

and for linking predictions to decision-making. Re-
cent research has reported significant improvements

Modern markets are data-rich and evolving rapidly.  in asset price setting and prediction, and reinforce-
Machine learning provides tools for leamlpg non-lin-  ment learning is rapidly gaining popularity in trading
ear state-dependent models from large, noisy datasets  yegearch [1,2]. These advancements are prompting a
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comprehensive view of how major paradigms are applied
to the quantitative trading pipeline and where the areas of
sustainable value creation lie.

This study aims to address this need. In this study, it re-
views supervised learning, unsupervised learning, deep
learning, ensemble learning, and reinforcement learning
in signal generation, portfolio construction, execution,
and market trading. This study places emphasis on a deci-
sion-making centered approach. Signals need to be trans-
formed into portfolios and orders, explicitly considering
costs, risks, and constraints. This end-to-end approach is
based particularly on classical frameworks such as asset
allocation by the mean-variance model and its extensions,
execution by Almgren-Chriss, and inventory price setting
by Avellaneda-Stoikov [3-5].

There are three contributions. First, representative al-
gorithms are summarized, including the algorithm’s
expansion tree, sequential models, and deep reinforce-
ment learning, etc. Emphasis is placed on the evidenced
conditions under which they are effective. Second, the
discussion extracts implementation lessons often omitted
in model-centered research, such as realistic costs, market
impacts, capacity limitations, and governance of data lin-
eage and reproducibility. Third, these insights are associ-
ated with evaluation practices, and emphasis is placed on
the pitfalls of multiple tests and overfitting in backtesting,
which may overestimate the reported performance.
Methodologically, the study unfolds in four stages. Sec-
tion 2 sets up a brief technical context on machine learn-
ing and the trading stack. Section 3 examines the appli-
cations by paradigm with concise case proofs and model
schemas. Section 4 discusses the strengths and limitations,
organized around the robustness against non-stationarity,
the alignment between learning objectives and trading ob-
jectives, and operational constraints. Section 5 concludes
with guidelines for research and deployment. The selec-
tion gives preference to peer-reviewed sources or those
archived in the last ten years, and, if necessary, to funda-
mental works.

The aim is practical: to provide clear guidelines focused
on machine learning decision-making in quantitative
trading. The specific objectives are to identify the types
of models suitable for different stages of the pipeline, for-
mulate learning goals taking into account costs and risks,
and evaluate strategies using robust procedures for data
exploration. The desired outcome is not only predictive
accuracy but also a performance that is applicable and ro-
bust even out-of-sample.

2. Overview of Machine Learning and
Quantitative Trading

2.1 Machine Learning

Machine learning covers supervised, unsupervised, rein-

forcement, deep, and ensemble methods, each learning
from data under different information regimes [6]. To
move beyond taxonomy, this section focuses on three rep-
resentative models that anchor much of modern practice:
support vector machines, gradient-boosted decision trees,
and long short-term memory networks.

Support Vector Machine constructs a maximum-margin
separator in a possibly high-dimensional feature space via
kernel mappings. The primal objective balances margin
width and hinge-loss penalties; the dual enables efficient
use of kernel functions for non-linear decision boundaries.
Soft-margin variants handle noise through a regularization
constant, and multi-class extensions are built by one-vs-
rest or one-vs-one decompositions [7].

Gradient boosting builds an additive model by stage-wise
functional gradient descent. Scalable implementations
such as XGBoost add sparsity-aware split finding and
second-order optimization to improve speed and accuracy
across regression, classification, and ranking tasks [8].
Long Short-Term Memory is a recurrent network with
gating mechanisms. It is engineered to capture long-range
dependencies and simultaneously prevent the problem of
vanishing gradients. Input, output, and forget gates regu-
late information flow through a cell state, enabling stable
credit assignment across long sequences; bidirectional
stacks and backpropagation-through-time make it a stan-
dard baseline for sequence modeling [9].

2.2 Quantitative Trading

Quantitative trading automates signal generation, portfolio
construction, execution, and market-making under explicit
models and constraints [10]. To keep the discussion con-
crete, this section highlights three foundational models:
mean-variance and Black-Litterman for portfolio selec-
tion, Almgren-Chriss for optimal execution, and Avellane-
da-Stoikov for limit-order market making.

Mean-variance portfolio selection solves a quadratic pro-
gram that trades expected return against variance under
budget and, when needed, additional constraints. The
Black-Litterman formulation blends market-implied equi-
librium returns with investor views through a Bayesian
update, stabilizing weights and improving out-of-sample
behavior relative to naive mean-variance inputs [3,11].
Optimal execution in the Almgren-Chriss framework
chooses a trade schedule that minimizes a mean-variance
objective given temporary and permanent price impact
and exogenous volatility; closed-form trajectories arise
under quadratic impact [4].

Limit-order market making under Avellaneda-Stoikov
models inventory-aware quotes with Poisson order arriv-
als. Optimal bid and ask offsets balance spread capture
against inventory and adverse-selection risk via a Hamil-
ton-Jacobi-Bellman equation, producing dynamic quotes
that adapt to inventory and market conditions [5].

Risk management overlays these modules with exposure,



leverage, and drawdown controls; Expected Shortfall is
often preferred to Value-at-Risk for tail-risk sensitivity
[12].

3. The Application of Machine Learn-
ing in Quantitative Trading

With the growth of data and the enhancement of comput-
ing capabilities, machine learning has found extensive
applications in quantitative trading. The latest progress in
machine learning and deep learning has transformed the
methods of stock prediction. Unlike traditional statistics,
these models learn latent patterns from large historical
datasets and respond in near real time [1]. Accurate trend
prediction can improve portfolio decisions and risk con-
trol. This chapter focuses on five method families and
highlights representative applications and models.

3.1 Supervised Learning in Quantitative Trad-
ing

Supervised models learn from labeled market data to pre-
dict trends and generate signals. They are commonly used
for direction classification and return or price regression
[6]. In financial prediction tasks, stacked and hybrid clas-
sifiers, which integrate logistic regression, decision trees,
support vector machines, and recurrent networks, have
shown accuracy improvements compared to single models
[13].

Feature engineering remains crucial. A three-stage feature
pipeline-based hybrid GA-XGBoost method enhanced the
prediction of the next-day direction of the KOSPI index
[14]. Dimensionality reduction combined with news and
macro information has also been explored to enhance sta-
bility and regime discrimination [15].

3.2 Unsupervised Learning in Quantitative
Trading

Clustering groups stocks or market regimes by similarity
and supports portfolio construction and risk monitoring.
Recent studies use unsupervised algorithms to identify
regime structure and latent market factors from returns,
news, and macro indicators [15]. Clustering also assists
pairs trading; unsupervised selection yields more stable
pairs and trading returns than traditional methods [16].

3.3 Reinforcement Learning in Quantitative
Trading

Reinforcement learning learns trading policies through
interaction with the market environment and has been
applied to single-asset trading, portfolio allocation, execu-
tion, and market making. Ensembles of deep Q-learning
agents have shown positive cumulative returns and better
stability in high-frequency settings [2]. Sentiment - aware
deep reinforcement learning enhances the robustness of
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portfolio allocation in large equity universes [17]. Sur-
veys also report progress in order execution and inven-
tory-aware market making using reinforcement learning,
while noting challenges in reward design, safe explora-
tion, and sim-to-real transfer [18].

3.4 Deep Learning in Quantitative Trading

Deep learning captures nonlinear temporal structure and
heterogeneous features. For time-series prediction, LSTM
networks often outperform shallow models; for low-vola-
tility stocks, a two-layer LSTM achieved strong accuracy
relative to traditional baselines [19]. Bi-directional LSTM
and related architectures have been applied to short-hori-
zon prediction with favorable results [20].

Convolutional networks operate on image-like representa-
tions such as K-line mosaics, and combinations with deep
reinforcement learning have produced profitable signals in
several settings [2,13]. Multimodal pipelines embed news
into vectors and join them with price sequences in atten-
tion-based recurrent or transformer backbones, improving
performance during volatile periods [21,22]. Recent work
further explores large language models to structure finan-
cial text and support downstream predictors [23].
Generative approaches are emerging. Hybrid models that
combine sentiment analysis, denoising autoencoders, and
LSTM improved both predictive accuracy and risk-return
metrics [21]. GAN-based hybrids with evolutionary op-
timization have outperformed pure GAN and traditional
statistical models in controlled studies [24].

3.5 Ensemble Learning in Quantitative Trading

Ensembles improve accuracy and robustness by aggre-
gating diverse models. Graph-temporal ensembles first
extract cross-stock relations with graph convolutions and
then model temporal dynamics with recurrent networks;
this approach has shown stability in bear markets and
superior performance to earlier baselines [25]. For multi-
modal fusion, separate predictors for technical, fundamen-
tal, and news signals can be combined by weighted aver-
aging to yield higher accuracy than any constituent model
[22].

4. Discussion

4.1 Strengths of Machine-Learning-based
Quantitative Trading

Machine learning captures nonlinear relations, feature
interactions, and regime-dependent patterns that linear
factor models miss. Deep networks learn hierarchical
representations directly from raw signals, and ensembles
reduce variance and stabilize performance.

Modern pipelines integrate heterogenecous sources by
combining prices and volumes, fundamental indicators,
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alternative data, and microstructure features within a sin-
gle learning system. This integration broadens usable sig-
nals and improves robustness.

Loss and reward functions can be aligned with trading
goals such as risk-adjusted return, turnover control, and
drawdown aversion. Reinforcement learning optimizes
sequential decisions including timing, position sizing, and
inventory management, rather than separating prediction
from execution.

Adaptive procedures support changing markets. Online
or rolling retraining, transfer or meta-learning, and prin-
cipled model selection or ensembling enable continuous
adjustment to shifting regimes. Automated feature genera-
tion and hyperparameter optimization accelerate research
iteration and deployment.

Execution quality also improves. Supervised models and
reinforcement learning learn cost-aware slicing, schedul-
ing, and quoting policies that reduce slippage and market
impact, which lowers implementation shortfall compared
with heuristic execution.

4.2 Limitations of Machine-Learning-based
Quantitative Trading

Financial data are non-stationary and subject to concept
drift. Policy changes, structural shifts, and crowding alter
the data-generating process. Signals can decay quickly,
and models trained on past regimes often fail near regime
breaks.

Overfitting is a persistent risk. High-dimensional features,
limited effective sample sizes, and extensive hyperpa-
rameter search increase false discoveries. Typical pitfalls
include look-ahead bias, leakage across time, and backtest
overfitting. Without purged or embargoed walk-forward
evaluation and strict research hygiene, many reported al-
phas are artifacts.

Predictive accuracy does not guarantee profitability.
Transaction costs, financing, borrow fees, and market im-
pact can erase paper gains. Unconstrained learners may
generate excessive turnover and fragile profit and loss.
Reinforcement learning introduces additional challenges.
Sample inefficiency, stochastic and delayed rewards, and
unsafe exploration hinder stable learning. Gaps between
simulators and live markets degrade policies, and reward
design that reflects risk, capacity, and costs remains diffi-
cult.

Limited interpretability complicates governance and audit.
Black-box models impede risk oversight and regulatory
review. Results can be sensitive to data vintages, feature
choices, and random seeds, which harms reproducibility
and model risk management.

Operational constraints restrict feasible architectures.
Latency budgets, compute and memory limits, and data
quality issues such as survivorship bias, stale quotes,
corporate actions, and microstructure noise are common.
Monitoring, drift detection, and safe rollback are essential

but often under-engineered.

Markets adapt to profitable strategies. Crowding and
adversarial responses compress edges, raise impact, and
impose capacity limits. Successful policies can alter mi-
crostructure and invalidate their own assumptions.

5. Conclusion

This study reviewed how core machine-learning para-
digms, including supervised, unsupervised, reinforcement,
deep, and ensemble methods, interact with the quantita-
tive trading pipeline across signal generation, portfolio
construction, execution, and market making. The topic
is important because modern markets are data-rich and
fast-moving. Methods that learn nonlinear, regime-depen-
dent structure and that connect prediction to decision can
improve risk-adjusted performance. These methods also
help scale research and operations.

The synthesis in Sections 2—4 clarifies where machine
learning adds durable value and where it fails. Tree en-
sembles and support vector machines provide strong
baselines with interpretable structures. LSTM and CNN
hybrids with attention improve sequence modeling. Rein-
forcement learning aligns learning with sequential trading
objectives. Unsupervised tools reveal regimes and latent
factors that aid diversification. Credible deployment re-
quires design choices that were often implicit in prior
work. Purged, walk-forward evaluation with realistic costs
and market impact is necessary. Objectives should account
for risk, turnover, and drawdown. Capabilities and per-
sonnel allocation need to be evaluated. Governance must
ensure the traceability, reproducibility, and explainability
of data. Associating signals with implementation is just as
important as mere predictability. Portfolio optimization,
execution plans, and inventory management need to be
designed together with the learning module and should
not be added after the model has been formed.

Several methods can narrow the gap between promising
past tests and robust online performance. Robustness to
non-stationarity can be improved through online learning,
meta-learning, change point detection, and domain adap-
tation between assets and regimes. Decision-centric learn-
ing benefits from end-to-end pipelines that associate pre-
dictions with the portfolio and execution layers, as well as
learning objectives that incorporate differentiable risk and
cost terms. Reliable reinforcement learning requires safer
exploration, offline training on high-fidelity simulators,
and real-world validation of simulators under cost and
capacity constraints. Multimodal and base models require
reasonable integration of prices, fundamental data, and
text, strict control of information leakage, and estimation
of uncertainty for position sizing. Evaluation and gover-
nance need to be based on open benchmarks that are sen-
sitive to trading costs, stress tests for extreme events, and
fully documented data vectors with reproducible artifacts.



Machine learning expands the quantitative toolbox from
prediction to optimization of decision-making. The sus-
tainable impact depends on approaches that are accurate,
cost-conscious, risk-controlled, interpretable, and opera-
tionally robust.
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