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Abstract:

Galaxy morphology classification is a fundamental yet
challenging task in astronomical research, as it plays a
crucial role in understanding the universe’s structure and
evolution. The complexity and diversity of galaxy shapes,
combined with the large volume of astronomical data,
necessitate efficient and accurate automated methods for
classification. This paper provides a comprehensive review
of attention-based convolutional neural networks (CNNs)
for galaxy classification, highlighting their potential to
overcome limitations of conventional approaches. This
paper systematically surveys three advanced methods:
attention-gating, multi-branch attention networks, and
dynamic multiscale attention networks, detailing their
architectures, mechanisms, and performance gains. These
methods enhance feature focus, multi-scale fusion, and
interpretability while reducing computational costs. The
analysis confirms that attention-based CNNs significantly
improve classification accuracy and robustness, making
them highly valuable for large-scale astronomical
surveys. This review offers valuable insights into current
advancements and future directions, contributing to
the development of more reliable and efficient galaxy
classification systems.

Keywords: Attention CNN, attention-gating, multi-
branch attention networks, dynamic multiscale attention
network.

1. Introduction

research indicates that there are approximately two
trillion observable galaxies in the universe [1].

In astrophysics, a galaxy i‘s a complex dynamical  Gajaxy classification is one of the fundamental tasks
system composed of stars, interstellar gas, dust and i a5tronomical research, but for a long time in the

dark matter bound by gravity, and it is the fundamen-

past, astrophysicists mainly relied on manual classifi-

tal building block of the cosmic structure. Current 00 of galaxies, which was not only inefficient but
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also had a high error rate. Research shows that the team
led by Swiss astronomer Fritz Zwicky spent seven years
classifying only about 30,000 galaxies, averaging less
than 15 per day, with a missed detection rate of over 40%
[2]. With the development of technology, to improve the
efficiency and accuracy of galaxy classification, research-
ers began to gradually use neural network technology to
classify galaxies from 1990.

In 1992, Storrie-Lombardi et al. first introduced Artifi-
cial Neural Networks (ANNs) into galaxy classification.
By constructing a three-layer feedforward network, with
non-parametric morphological indicators of galaxy im-
ages as input parameters and Hubble types as output [3].
In 2015, Dieleman et al. applied the Orientation-Invari-
ant Convolutional Neural Network (CNN) technology
to galaxy classification. By inputting Sloan Digital Sky
Survey (SDSS) galaxy thumbnails and employing a data
augmentation strategy to learn rotational invariance, they
constructed a network with four convolutional layers and
two fully connected layers, which output 11 fine morpho-
logical categories of the Galaxy Zoo [4]. In 2022, Dai et
al. classified galaxies using an improved deep residual
network (ResNet-26) technique. By reducing the depth
of ResNet to 26 layers, increasing the channel width, and
introducing a multi-scale feature fusion module, the sensi-
tivity to small-scale structures was enhanced [5]. In 2024,
Jiang et al. utilized the Convolutional Vision Transformer
(CvT) technology to classify galaxies. By integrating the
local feature extraction capability of convolutional neural
networks with the global attention mechanism of Trans-
formers, they achieved a collaborative modeling of the
multi-scale structures of galaxies [6].

Although many studies in the past have proposed different
models or classification methods, there are still many lim-
itations in using conventional CNN methods for galaxy
classification, which is mainly stem from the diversity
of galaxies and the complexity of images. Astronomical
images often contain noise, occlusions, and overlapping
celestial bodies, further increasing the difficulty of classi-
fication. Attention-based methods have shown significant
advantages in galaxy classification. They can adaptively
focus on key regions in the image and establish long-dis-
tance pixel associations, which is particularly important
for identifying the fine structural features of galaxies.

The aim of this paper is to discuss the method of classify-
ing galaxies using attention-based CNN. The remaining
part of this article consists of Method, Discussion and
Conclusion. In Method section, the author will focus on
elaborating the workflow, innovation points and frame-
work of Attention-based CNN. In Discussion section, the
current challenges and future prospect in this field will be
analyzed, and a summary will be made in Conclusion sec-

tion.

2. Attention-based CNN Methods for
Classifying Galaxies

The latest research indicates that, compared with con-
ventional CNN, attention-based models can significantly
enhance the accuracy and interpretability in galaxy classi-
fication. Next, the author will introduce three commonly
used attention CNN methods in the field of galaxy classi-
fication, namely attention-gating, multi-branch attention
networks, and dynamic multiscale attention network.

2.1 Attention-gating

In October 2020, Bowles et al. proposed the use of the at-
tention-gating method for galaxy classification [7]. Atten-
tion-gating is a neural network that combines the attention
mechanism and gating units to enhance the model’s focus
on and control over key information. The attention mech-
anism can simulate the focusing ability of human vision,
enabling the model to automatically identify and focus on
important features and regions in the input data while ig-
noring irrelevant information [8]. Gating units, on the oth-
er hand, can control the flow of information, determining
which information should be retained or discarded, and
then dynamically adjust the weights of features, further
focusing on key features through the attention mechanism
[9].

When classifying galaxies, the Attention-gating CNN in-
fluences the output methods of each model through range
normalization, fine-tuning aggregation, and three atten-
tion gating mechanisms [7]. The range normalization and
fine-tuning aggregation methods can provide significantly
improved attention maps, and the three attention gates
can enhance the interpretability of the generated attention
maps [10].

Bowles et al. used the image data from the VLA FIRST
survey as the dataset. After preprocessing and data aug-
mentation, they compared the performance of the trained
Attention-gating CNN architecture with the classical CNN
model trained and evaluated by Tang et al. [11].

The experimental results in this paper demonstrated when
trained with the MiraBest dataset [12], the performance
of the models has all improved, and the number of param-
eters used by the Attention-gating CNN is less than half
that of the classical CNN.

Compared with conventional CNN, this method has the
advantages of high parameter efficiency, strong interpret-
ability and strong anti-overfitting ability, which enhances
the credibility and debuggability of the model. However,
the interpretability of its attention map is greatly affected



by hyperparameters, and different normalization and ag-
gregation methods will significantly affect the clarity and
interpretability of the attention map.

2.2 Multi-branch Attention Networks

In January 2021, Zhang et al. proposed the use of a multi-
branch attention network for classifying galaxy clusters
[13]. This method combines attention and bivariate Gauss-
ian distribution, and classifies the given galaxies by using
spatial attention. The multi-branch attention network is di-
vided into a primary branch and an auxiliary branch, both
of which adopt ResNet-18 as the backbone network [14].
Researchers used the ResNet architecture in the primary
branch to extract advanced feature maps, and represented
the output of the last residual block before global average
pooling as M to generate the attention map [15]. Even-
tually, the feature vector extracted by the pooling layer
was denoted as V1. In the auxiliary branch, the output of
the last global average pooling layer was recorded as V2.
V1 and V2 were concatenated to form a 1x1x1024 tensor
map, which was then passed to the fully connected layer
to predict the classification distribution of three galaxy
cluster categories. This study formulated a parameter
function using the bivariate Gaussian distribution to guide
the model to focus on the central region of the image
during the training process.

This study employs a combined loss function of classifi-
cation and regression to train the model. The overall loss
function is expressed as L = xxx, where x, X, and x repre-
sent the classification loss, namely the primary loss, aux-
iliary loss, and fusion loss, respectively, which are used to
identify the core type of galaxy clusters in the input X-ray
images. The last X represents the regression loss.

This study trained the model using a combined loss func-
tion of classification and regression, and the overall loss

function is expressed as L=a,l,+a,L,+a,L, +a,L,

a L

a"a’

among them, «,L,, and «a,L, are classification

losses, namely primary loss, auxiliary loss, and fusion
loss, respectively, used to identify the core type of galaxy

clusters in the input X-ray images. The last one, «, L, , is

the regression loss, which utilizes Cramér distance to in-
corporate the ordinal relationship among cluster types [16].
Zhang et al. utilized the TNG300 from the IllustrisTNG
project as the dataset [17], preprocessed it, and optimized
it with Adam. They compared the experimental results
with ResNet-18 as the baseline method [13].

Compared with the conventional CNN, this method has
the advantages of accurately locating key regions, a du-
al-branch collaborative mechanism, and a loss function
design that integrates domain knowledge. It can suppress
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the interference of irrelevant background noise and en-
hance the model’s ability to perceive subtle differences.

2.3 Dynamic Multiscale Attention Network

In July 2025, Ma et al. proposed the use of Dynamic Mul-
tiscale Attention Network (DMAGNet) for classifying
galaxy morphologies [18]. This method combines the
Dynamic Large Kernel (DLK), Multiscale Feed-Forward
Network (MS-FFN), and Attentional Feature Fusion (AFF)
modules to enhance the model’s ability to extract both
global and local features from galaxy images. The DLK
module expands the receptive field by adaptively selecting
large convolutional kernels to extract features, the MS-
FFN processes multi-scale features, and the AFF module
replaces the addition operation in traditional residual con-
nections to achieve more effective feature fusion.

When classifying galaxies, DMAGNet takes 256%256-pix-
el galaxy images as input, undergoes initial convolution
and normalization through the Stem module, and then ex-
tracts multi-level features through multiple DMA modules
(including DLK, MS-FFN, and AFF). Finally, it outputs
the probability distribution of six types of galaxy mor-
phologies through the attention pooling layer and fully
connected layer in the Head module [19]. This network
significantly improves classification performance while
maintaining a low parameter count and computational
complexity.

Ma et al. utilized 15,266 galaxy images from the Galaxy
Zoo DECaLS project as the dataset [20], which was clas-
sified into six categories: Edge-On, Cigar, In-Between,
Round, Spiral, and Merger. To address the issue of class
imbalance, data augmentation operations such as horizon-
tal flipping, vertical flipping, and random rotation were
performed on the minority classes, ultimately constructing
a balanced dataset containing 23,610 images. They com-
pared DMAGNet with various mainstream networks in-
cluding ResNet, MaxVit, and TransNext on the same test
set.

The experimental results show that DMAGNet achieves
an accuracy of 97.1%, a recall rate of 96.8%, and an F1
score of 96.8% on the test set, significantly outperform-
ing other comparison models. Particularly in terms of the
number of parameters (9.4M) and computational cost (4.8
GFLOPs), DMAGNet demonstrates high efficiency while
maintaining high performance. The ablation experiments
further verify that the AFF module contributes the most
to the improvement in accuracy, while the DLK module
can significantly reduce the model complexity while still
maintaining high classification performance.

Compared with the conventional CNN, this method has a
stronger ability to fuse multi-scale features, higher classi-
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fication accuracy and better computational efficiency. Its
attention mechanism and dynamic convolutional kernel
design enhance the model’s perception ability of the de-
tails and global structure of galaxy morphology. Mean-
while, it shows better robustness when facing category
imbalance and image quality differences. However, the
model still has some confusion when dealing with galax-
ies with highly similar morphologies (such as Cigar and
Edge-On). In the future, it can be further optimized by
introducing more fine-grained feature representations or
fusing multi-source data.

3. Discussion

3.1 Current Limitations of Attention-based
CNN

Based on the above analysis of the attention-based CNN,
it can be noted that although attention-gating, multi-
branch attention networks, and large kernel attention
have significantly improved the efficiency, accuracy, and
robustness of galaxy classification, they still face some
limitations. In this section, the authors will analyze these
limitations and provide relevant suggestions for future im-
provements.

3.1.1 The Unstable Interpretability of Attention Maps

The interpretability of attention maps is highly dependent
on the choice of normalization functions and aggregation
methods, although these choices have relatively little
impact on classification performance metrics. In essence,
this constitutes a paradox of the attention mechanism in
practical applications.

Different normalization methods determine the distribu-
tion characteristics of attention weights. Softmax gener-
ates sparse and sharp attention maps, which, although they
may enhance the discriminative power of key features,
mask secondary features such as weak jets or extended
petal-like structures, significantly reducing the richness
of interpretation; the Sigmoid function, due to its satura-
tion property, often produces fuzzy and diffuse attention
responses, making it difficult to clearly define the precise
boundaries of the regions of interest for the model; while
Range normalization retains the relative gradient of fea-
ture responses, generating smoother and more continuous
attention maps, thus aligning more closely with the visual
judgment process of human experts. In 2019, Schlemper
et al. abandoned the use of softmax as the normalization
method for attention gating due to the sparsity of the at-
tention maps caused by the Softmax normalization meth-
od.

The aggregation method indirectly affects the spatial

focus degree and hierarchical consistency of the atten-
tion map by changing the fusion mode of the outputs of
different-level attention gates. This leads to a practical
dilemma: in order to obtain an easily understandable at-
tention map, researchers have to give up the configuration
that is slightly better in quantitative indicators. As a result,
the model debugging process not only needs to optimize
performance but also “debug” its interpretative behavior,
increasing the complexity of usage.

Therefore, the selection of hyperparameters essentially
involves a trade-off between model performance and in-
terpretability, which undermines the credibility of the at-
tention mechanism as a stable and interpretable tool, high-
lighting the necessity of developing attention architectures
that are more robust to hyperparameters or can adaptively
generate the most interpretable results.

3.1.2 High Computational Costs and Structural Com-
plexity

Although multi-branch has achieved performance im-
provements, it comes with high computational costs and
structural complexity. Firstly, its dual-branch design
essentially requires the parallel operation of two indepen-
dent ResNet-18 backbone networks: the primary branch
processes the global image, while the auxiliary branch
handles the core region cropped by attention and Gaussian
masks. This means that the model’s parameter count and
the computational load during forward propagation nearly
double, resulting in significantly longer training and infer-
ence times compared to the single-branch baseline model.
Secondly, the generation and fusion process of the atten-
tion map and Gaussian mask further increase the compu-
tational layers and complexity. Generating the class acti-
vation map requires weighted summation and upsampling
of the final feature map, while generating the Gaussian
mask involves calculating the probability distribution of
each pixel in the image relative to the brightest point. All
these operations require additional computing resources.
More crucially, this architecture introduces multiple hy-
perparameters that require fine-tuning, such as 71 which
determines the binarization threshold of the attention map,
A which controls the range of the Gaussian distribution,
and 1> which decides the final mask. These hyperparame-
ters are interdependent, and their optimal values are hard
to determine directly, necessitating extensive trial-and-er-
ror experiments to identify them, which significantly in-
creases the cost of model development and tuning.
Ultimately, this complexity directly affects the stability of
training. The joint training of multiple components such
as the main branch, auxiliary branch, and attention mod-
ule makes the optimization landscape of the loss func-
tion more complex, with longer gradient flow paths and



a greater tendency to fluctuate, which may lead to slow
convergence or getting stuck in local optima during the
training process.

3.2 Future Prospects of Attention-based CNN

3.2.1 Improving the Stability and Reliability of the At-
tention Mechanism Through Multi-Dimensional Strat-
egies

Firstly, an adaptive normalization mechanism can be de-
veloped. By designing a learnable normalization module,
the model can dynamically select or fuse different normal-
ization methods based on the features of the input image,
thus avoiding reliance on manual selection. At the same
time, the clarity of the attention map is introduced as an
auxiliary loss term to enhance the visual interpretability of
the attention map while optimizing the classification accu-
racy.

Secondly, visual-semantic alignment supervision can be
introduced. By using the key regions annotated by experts
as weak supervision signals or by adopting contrastive
learning to distinguish between “correctly focused” and
“incorrectly focused” regions, the attention map can be
made more in line with the prior knowledge of astrono-
mers.

In addition, more physically meaningful aggregation
strategies need to be designed, such as weighted fusion of
features at different levels (e.g., core, petal, background)
through structure-aware mechanisms, or exploration of
explainability-driven aggregation functions (e.g., spa-
tial-weighted pooling), to make the aggregation process
itself interpretable.

Finally, standardized post-processing and interactive vi-
sualization tools should be developed to assist researchers
in visually comparing the changes in attention maps under
different settings, thereby better understanding model be-
havior and selecting appropriate configurations.

3.2.2 Improving the Efficiency of Multi-Branch Net-
works Through Lightweight Architecture and Auto-
mated Optimization

Firstly, in terms of model architecture, parameter sharing
and a single backbone design can be adopted to replace
the current dual-branch independent structure. For in-
stance, a shared backbone network can be used to extract
features, and two branches can be derived from different
network layers: deep features are used to generate global
context representations (replacing the Primary Branch),
while shallow or mid-level features are upsampled and
combined with attention maps to crop the regions of in-
terest (replacing the Auxiliary Branch). Further, dynamic
computational paths can be explored, where the activation
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of the auxiliary branch is adaptively determined based on
the complexity of the input image. For simple samples,
only the main branch is used for inference, thereby en-
hancing the average inference efficiency.

Secondly, to address the computational overhead of atten-
tion and Gaussian mask generation, a differentiable and
lightweight alternative mechanism can be introduced. For
instance, a learnable Spatial Transformer Network can be
used to replace the manually designed Gaussian mask, al-
lowing the network to automatically learn how to warp or
crop the image to focus on the key regions.

Finally, to enhance the stability of training, a phased train-
ing strategy can be adopted. First, train the main branch
and the attention module independently until they are
stable, and then introduce the auxiliary branch for joint
fine-tuning. Additionally, the introduction of gradient clip-
ping, more precise loss weight scheduling, and normal-
ization techniques can effectively alleviate the gradient
instability issues caused by the joint training of multiple
components.

4. Conclusion

This paper provides a comprehensive review of atten-
tion-based CNN methods for galaxy classification. This
paper systematically surveys three prominent approach-
es—attention-gating, multi-branch attention networks, and
dynamic multiscale attention networks. Highlighting their
architectures, advantages, and performance. The analysis
reveals that current methods still face challenges such as
sensitivity to hyperparameters, high computational cost,
and structural complexity. Future work should focus on
developing more robust and interpretable attention mech-
anisms, lightweight architectures, and adaptive training
strategies. Despite these limitations, attention-based
CNNs represent a promising direction for achieving high-
ly accurate and efficient automated galaxy classification.
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