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A Comprehensive Investigate of Deep
Learning in Facial Pain Prediction

Abstract:

Traditional approaches to pain assessment, such as patient
self-reporting and clinician observation, have inherent
limitations, particularly for non-verbal and vulnerable
populations, due to their subjective nature and lack
of objectivity. This study delves into the potential of
deep learning for facial pain prediction. Five primary
model categories are examined: Convolutional Neural
Networks (CNNs) like the improved EfficientNet B4S
demonstrate 99.7% accuracy in detecting high-intensity
pain, while ResNet101 combined with LSTM achieves
86.13% accuracy in binary classification. Spatio-
temporal models, exemplified by AHDI, surpass current
state-of-the-art methods. Additionally, Transformer-
based architectures, point cloud/Graph Neural Networks
(GNNs), and multimodal fusion models exhibit promising
results. However, challenges persist, including model
interpretability issues, limited clinical generalizability, and
data annotation bottlenecks. Future research will emphasize
explainable Al (XAI), domain adaptation, and lightweight,
privacy-preserving model deployment to facilitate the
transition from laboratory settings to clinical practice,
ultimately benefiting non-verbal patients, and achieving
for more equitable, reliable, and ethically responsible pain
assessment solutions.
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dividuals with cognitive impairments. Even among
verbal patients, the timing of pain reporting can be
delayed, particularly in post-operative scenarios, and
self-reported scales often overlook subtle facial ex-
pressions indicative of pain. Furthermore, clinician
assessments are inherently subjective and prone to

1. Introduction

Physical pain is a ubiquitous experience encountered
in various clinical settings, including post-surgical
recovery, chronic conditions like arthritis, and trau-
matic injuries. Traditional methods for assessing

pain, primarily relying on patient self-reporting and
clinician observation, possess significant limitations.
Self-reporting is impractical for non-verbal patients
such as infants or those under intubation, or for in-
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inconsistencies, impacted by varying levels of train-
ing and potential inattention during observations.
These assessments frequently miss delicate signs of



pain, such as muscle micro-movements, specific Action
Units (AUs), and fleeting grimaces, all of which are criti-
cal indicators of a patient’s discomfort.

Deep learning has emerged as a powerful tool in bridging
the gap between subtle, imperceptible features and their
accurate interpretation, particularly in the context of facial
pain assessment. Sophisticated integrated frameworks that
harmonize Convolutional Neural Networks (CNNs) with
Recurrent Neural Networks (RNNs) have demonstrated
remarkable success. These frameworks have achieved an
impressive accuracy rate exceeding 89% in classifying
pain levels solely from facial expressions, surpassing hu-
man-centered evaluations in the process [1-4]. In clinical
environments, the application of deep learning for facial
pain prediction has proven invaluable, especially in criti-
cal areas such as postoperative and trauma care. Persistent
postsurgical pain affects a staggering 57% of patients
[5], often due to inadequate early assessments that lead
to treatment delays. To address this challenge, the UN-
BC-McMaster Shoulder Pain Expression Database has
provided a crucial resource. This database comprises 200
video sequences from 25 patients suffering from shoul-
der pain, each meticulously annotated with pain intensity
scores ranging from 0 to 10 points and corresponding fa-
cial action units, such as frowning and eyelid contraction
[6]. Deep learning models, when trained on this dataset,
exhibit a remarkable ability to extract spatial features of
facial muscle contractions. Convolutional neural networks
perform very well in recognizing fine-grained features.
For instance, they can accurately identify the specific
depth of the crease between the eyebrows and the actual
degree of lip drooping. Concurrently, RNNs enable tem-
poral modeling, capturing the dynamic evolution of pain
expressions—transitioning from mild discomfort to overt
grimacing. The combined prowess of these models has led
to an accuracy rate exceeding 85% in grading pain during
rehabilitation, outperforming subjective assessments using
the Visual Analogue Scale (VAS) by a significant margin.
Thus, deep learning not only amplifies the capacity to rec-
ognize and interpret facial cues of pain but also enhances
the precision and reliability of pain assessments in clinical
settings, ultimately paving the way for more timely and
effective treatment interventions.

The intensive care unit (ICU) poses unique and intricate
challenges, particularly in assessing and managing pain
in patients. Studies reveal that 3.3% of Critical-Care Pain
Observation Tool (CPOT) assessments indicate severe
pain in ICU patients [7]. However, these patients, often
intubated or sedated, are unable to communicate their dis-
comfort. Nurses, conducting manual hourly assessments,
often miss fleeting episodes of pain.To tackle this pressing
issue, deep learning systems have been introduced, lever-
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aging real-time facial image capture via bedside cameras.
These systems are designed to operate even when facial
features are partially obscured by medical devices like
oxygen tubes. By focusing on crucial regions such as the
brow ridge and eyelids, and utilizing recurrent neural net-
works (RNNs) to track microexpression changes within
10 seconds (for instance, transient eyelid tightness), these
systems demonstrate remarkable accuracy.A study con-
ducted by Wu et al. highlights the system’s efficacy, with a
sensitivity of 89% in identifying severe pain (CPOT score
2). This represents a significant improvement of 23% over
manual assessments. Such advanced technology offers
immediate insights, guiding healthcare professionals to
promptly adjust analgesic medications and improve pa-
tient care.

At the algorithmic frontier, two significant technological
advancements stand out. The integration of Hybrid CNN-
RNN architectures has proven pivotal in addressing the
intricacies of recognizing dynamic pain expressions. By
employing a “spatial-temporal” dual-dimensional model-
ing approach, these architectures offer a comprehensive
solution. Li et al.’s research utilized ResNet34 as the con-
volutional neural network (CNN) backbone, enabling the
extraction of intricate, pain-related facial features. This
includes granular details such as pixel-level changes in
orbicularis oculi contraction. Complementing this spatial
analysis, the study employed Bidirectional Long Short-
Term Memory (BiLSTM) to process temporal information
across 50 frames per video. This allowed the model to
capture the evolutionary patterns of pain expressions, such
as the progressive muscle movement from calmness to
tension. When tested on a clinical dataset comprising 63
critically ill patients, the hybrid model demonstrated re-
markable performance, achieving an accuracy of 89.2% in
classifying pain grades (ranging from O to 2 points). No-
tably, it exhibited 91% specificity in identifying grade 2
pain, which necessitates urgent intervention. These results
significantly surpass those of traditional machine learning
models, like Support Vector Machines (SVM), which typ-
ically achieve around 76% accuracy.

Multimodal fusion technology has significantly advanced
beyond the constraints of singular data sources, benefit-
ing greatly from the comprehensive support of the MINT
database. This repository houses a treasure trove of di-
verse information, including RGB facial images, depth
data reflecting 3D facial structures, thermal imaging that
captures facial blood flow variations, and synchronized
physiological indicators such as heart rate and skin con-
ductance from 100 participants. The database encompass-
es various pain stimuli, ranging from pressure to tempera-
ture. Models trained on this multifaceted data employ an
advanced “early feature concatenation” technique, which
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smartly amalgamates facial texture features extracted
through convolutional neural networks (CNNs) with the
temporal dynamics of physiological signals—for instance,
the instantaneous surge in heart rate during pain. These
integrated models have achieved an impressive 91% accu-
racy in estimating pain intensity, marking a notable 9-per-
centage-point improvement over models relying solely on
RGB images. This remarkable outcome underscores the
pivotal importance of incorporating multi-dimensional
data in enhancing the robustness of pain assessment sys-
tems.

This paper delves into the realm of facial pain prediction,
focusing on the utilization of deep learning techniques.
It seeks to elucidate the technical underpinnings, clinical
implications, and future trajectories of this application.
Section 2 delves into the core deep learning models, high-
lighting the innovative aspects and operational workflows
of models like Convolutional Neural Networks (CNNs),
Vision Transformers (ViT), and Long Short-Term Mem-
ory networks (LSTM). Section 3 examines the existing
challenges, such as the interpretability of models and their
clinical viability, while also offering insights into potential
future developments, notably domain adaptation. Finally,
Section 4 concludes by summarizing the pivotal findings
and the significant contributions of this research.

2. Current Model Research Progress

2.1 Convolutional Neural Networks (CNNs)
and Their Variants

CNNs serve as a cornerstone in image processing, par-
ticularly for facial pain prediction. Classic architectures
like VGG, ResNet, and MobileNet leverage multi-layer
convolution and pooling to extract facial features hierar-
chically, laying a solid groundwork for pain classification
tasks.

2.1.1 Application of EfficientNet in Pain Expression
Evaluation

EfficientNet, a pioneering convolutional neural network
architecture, excels at balancing depth, width, and reso-
lution via a sophisticated compound scaling technique,
enabling it to achieve high classification accuracy with
minimal parameters. In 2023, Chen and colleagues lever-
aged this efficient framework in their study titled ,,Study
on Cancer Pain Facial Expression Evaluation Method
Based on EfficientNet™ [8]. They opted for the Efficient-
Net B4 model, renowned for its optimal blend of accuracy
and speed, as the foundation for their research. The study
introduced two pivotal enhancements to the basic archi-
tecture. Firstly, they substituted the Swish activation func-

tion with Mish, finding that Mish more effectively sus-
tains accuracy in deep networks and enhances information
flow. Secondly, they replaced the MobileNet module with
the Inception v4 module, a strategic move designed to
mitigate overfitting and lighten the computational burden.
These modifications collectively contributed to a refined
and more effective method for evaluating cancer pain fa-
cial expressions.

The EfficientNet B4S model demonstrated remarkable
performance across various pain levels in the test set [8].
Specifically, when individuals reported minimal pain
(0-1), the model achieved an accuracy rate of 96.3%. As
pain intensified to the mild-to-moderate range (2-3), accu-
racy dipped to 82.1%. However, for moderate pain (level
4), accuracy rebounded to 94.6%. Notably, for severe pain
levels (5-6), the model excelled with an accuracy rate of
99.7%. With extreme pain levels (7-8), accuracy declined
slightly but remained high at 96.8%.

This study demonstrates that the EfficientNet architecture
exhibits high accuracy and stability in facial pain predic-
tion, particularly in identifying high-intensity pain [8].
2.1.2 Residual Network (ResNet)-Based Pain Evalua-
tion Model

In 2023, Wu Jiang and colleagues presented a ground-
breaking model for facial pain prediction in their study,
leveraging the powerful capabilities of ResNet and its
advancements. Specifically, they introduced a dynamic
video pain evaluation model that seamlessly integrates
ResNet101 with Long Short-Term Memory (LSTM) net-
works. The model‘s architecture is meticulously designed:
Firstly, it employs a pre-trained ResNetl101 to meticu-
lously extract spatial features from each individual frame
of the video. Subsequently, these features are fed into an
LSTM network, which effectively captures the temporal
correlations between consecutive frames. Ultimately, a
fully connected layer processes this comprehensive in-
formation to automate the pain evaluation process, show-
casing the model‘s robustness and precision in detecting
facial pain cues from video data.

To bolster the feature representation in pain evaluation,
the researchers innovatively introduced a Dynamic Fu-
sion Module (DFNB). This module employs a Non-lo-
cal framework as its backbone. By intricately merging
features derived from the fourth and fifth blocks of the
ResNet101 network, the DFNB notably enhanced perfor-
mance. Notably, experimental outcomes revealed that the
model attained an impressive 86.13% accuracy in binary
classification on the UNBC-McMaster Shoulder Pain Ex-
pression Dataset, surpassing conventional methods by a
significant margin.



2.2 Spatio-Temporal Feature Fusion Models

Pain intensity evaluation hinges on understanding facial
expressions‘ dynamic nature. Studies thus prioritize de-
veloping deep learning models to seamlessly integrate
temporal changes in these expressions.

2.2.1 Video Pain Evaluation Model Based on Dynamic
Fusion Module

In 2023, Wu et al. introduced an innovative method for
evaluating pain in facial dynamic videos, focusing on the
utilization of a dynamic fusion module. Their ground-
breaking work, titled ,,Facial Dynamic Video Pain Evalua-
tion Method Based on Dynamic Fusion Module, outlined
the key steps involved in this process. Initially, they ad-
dressed the imbalance in the UNBC-McMaster Shoulder
Pain Expression Dataset by performing data balancing,
ensuring an equitable distribution of painful and non-pain-
ful frames. To enhance feature extraction, they improved
the pre-trained ResNet101 network using a Non-local
framework, thereby creating a dynamic fusion module.
This module formed the foundation of their image spatial
feature extraction model. Subsequently, they employed
this model to extract spatial feature information from each
frame of the video. These features were then fed into an
LSTM network to capture temporal dynamics. Through
this two-step process—spatial feature extraction followed
by temporal analysis—Wau et al. achieved highly accurate
facial pain recognition and automatic evaluation.

The novelty of this approach resides in its dynamic fusion
module, strategically integrating features from the fourth
and fifth blocks of the ResNet101 network. This fusion
effectively captures the subtleties of facial expression
changes, addressing clinical demands in both offline anal-
ysis and real-time applications. Consequently, it offers a
viable solution for prolonged pain monitoring.

2.2.2 Adaptive Hierarchical Spatio-Temporal Dynamic
Imaging (AHDI) Technology

In 2023, Issam and colleagues introduced a groundbreak-
ing technology named Adaptive Hierarchical Spatio-tem-
poral Dynamic Image (AHDI) for pain assessment. AHDI
encodes the spatial and temporal variations in facial
videos into a single, comprehensive RGB image. This
innovation streamlines video processing significantly,
allowing for the application of simpler 2D deep learning
models. Core attributes of AHDI include its ability to
transform videos into a solitary dynamic image, simpli-
fying workflows. It utilizes residual networks to extract
facial features, enhancing the accuracy of pain intensity
estimation and differentiating between genuine and simu-
lated pain expressions. Additionally, AHDI minimizes the
dependence on labeled data, which decreases the time and
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expense associated with data collection.

AHDI technology has demonstrated superior performance
in pain detection compared to existing techniques. On
the UNBC dataset, its Mean Squared Error (MSE) was
0.27, surpassing the previous State-of-the-Art (SOTA) by
0.13. Similarly, on the BioVid dataset, AHDI achieved an
accuracy of 89.76%, marking a 5.37% improvement over
the SOTA. Notably, in distinguishing between real and
simulated pain, AHDI exhibited an accuracy of 94.03%, a
significant 8.98% higher than the previous benchmark.
This study provides an efficient and accurate new method
for video-based pain assessment, with significant applica-
tion value in real clinical environments [9].

2.3 Application of Transformer Architecture in
Pain Prediction

Due to its strong global modeling capability and ability to
capture long-range dependencies, the Transformer archi-
tecture has received extensive attention in recent studies
on facial pain prediction.

2.3.1 Pain Automatic Recognition System Combining
ResNet and Transformer

In 2023, Wei Xinyi and colleagues introduced an in-
novative Al system for recognizing pain through facial
expressions in their paper. They designed a hybrid neural
network architecture that merges ResNet18 with a Trans-
former. This system‘s core strengths lie in its ability to
extract detailed facial features using ResNetl18 and then
model intricate relationships between these features via
the Transformer network. To assess the model‘s efficacy,
rigorous evaluation methods such as K-fold cross-vali-
dation and external validation were employed, ensuring
robust performance in recognizing pain from facial ex-
pressions.

Experimental results revealed that the hybrid model ex-
celled in pain classification tasks across various diseases.
With an accuracy of 79%, sensitivity of 80%, and spec-
ificity of 93%, it demonstrated robust performance. The
model also showed a positive predictive value of 82%, a
negative predictive value of 94%, and an F1 score of 80%.
External validation showed a slight improvement in sys-
tem performance. Accuracy reached 82%, Sensitivity
78%, Specificity 93%, PPV 80%, NPV 94%, and F1 Score
78%.

The research team created Al systems for automatically
recognizing pain in specific conditions, such as herpes
zoster, scapulohumeral periarthritis, and myofasciitis.
Notably, the Al for scapulohumeral periarthritis excelled,
achieving 78% accuracy and a 79% F1 score.

To enhance model interpretability, researchers employed
Grad-CAM to visualize Al focus during facial classifi-
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cation. Findings revealed the model precisely targeted
pain-related facial areas, like the periorbital and nasal re-
gions.

2.3.2 Transformer-Based Pain Analysis Method Using
Spatio-Temporal Information

In 2023, Ye and colleagues introduced a novel approach
for analyzing facial pain expressions by leveraging spa-
tio-temporal information in their research titled ,,Study on
Facial Pain Expression Analysis Method Based on Spa-
tio-Temporal Information” [10]. The core of this method
lies in the Transformer architecture, which is employed to
accurately capture the intricate spatial and temporal char-
acteristics of facial expressions. Here‘s an in-depth look
at the methodology:Initially, the input facial expression
video is methodically sampled using a sliding window
technique. This results in multiple video segments, each
providing a comprehensive view of the facial move-
ments. Subsequently, each frame within these segments
undergoes Discrete Cosine Transform (DCT), a process
designed to enhance fine details in the facial features, thus
facilitating better feature extraction.Next, these processed
video frames are fed into the Transformer model. Within
this model, a serial cross-approach is utilized to method-
ically extract both temporal and spatial features. This
approach ensures that the model not only understands the
individual facial configurations but also how they evolve
over time.Finally, the pain analysis result is derived by
aggregating the pain levels detected across all sampled
videos. This comprehensive approach ensures a robust
and reliable pain expression analysis, leveraging the rich
information embedded in the facial movements over time.
The innovative approach leverages a serial cross method
within the Transformer model to adeptly extract both tem-
poral and spatial features from facial expression videos.
This technique efficiently captures dynamic shifts in facial
expressions, enhancing the extraction of feature informa-
tion. Consequently, it boosts the accuracy of pain evalua-
tions and offers robust temporality, ideal for extended pain
monitoring scenarios.

2.4 Pain Prediction Based on Point Clouds and
Graph Neural Networks (GNNs)

In recent years, point cloud processing and Graph Neural
Networks (GNNs) have shown unique advantages in fa-
cial pain prediction, particularly in capturing facial geo-
metric features and dynamic changes.

2.4.1 Facial Feature Point Cloud Pain Diagnosis Model
Based on Spatio-Temporal Distribution

In 2025, Li Zhipeng and colleagues introduced a ground-
breaking pain diagnosis model leveraging facial feature

point clouds and their spatio-temporal distribution. Their
study, titled ,,Study on Facial Feature Point Cloud Pain
Diagnosis Model Based on Spatio-Temporal Distribution,*
outlined a method utilizing facial videos to diagnose pain.
The process begins by utilizing a sophisticated facial fea-
ture point extraction model to create a dynamic 3D point
set of facial landmarks, which undergoes normalization to
standardize the data. Subsequently, a point cloud classifi-
cation model is employed to derive feature vectors from
this normalized information. These feature vectors en-
capsulate the intricate changes in facial expressions over
time associated with pain. Finally, a classifier is utilized to
accomplish two tasks: binary classification, distinguishing
between painful and non-painful expressions, and a more
nuanced five-level pain classification. This innovative
approach holds promise for advancing pain assessment in
medical diagnostics.

The model was rigorously trained and evaluated on the
BioVid Heat Pain Dataset, yielding impressive results:
84.98% accuracy in binary pain recognition and 37.65%
in five-level classification. Notably, it excelled in identify-
ing level 4 pain with 72% precision.

Experimental results showed that the model has unique
advantages in capturing dynamic changes and geometric
features of facial expressions, providing a new technical
path for pain diagnosis [11].

2.4.2 Application of Weighted Graph Neural Network
(WGNN) in Pain Evaluation

In 2025, researchers introduced an innovative approach
to evaluating sheep pain by leveraging Weighted Graph
Neural Networks (WGNNS) in their paper titled ,,Study
on Sheep Pain Evaluation Method Based on Weighted
Graph Neural Network.* The core of this method revolves
around correlating facial landmarks with pain levels. To
facilitate this, they compiled a novel dataset of sheep
facial landmarks that aligns with the parameters of the
Sheep Pain Facial Expression Scale (SPFES). Utilizing
the YOLOVS8n detector, the researchers accurately iden-
tified these landmarks, achieving an average precision of
59.30%. By employing the WGNN model, they were able
to establish connections between the detected facial land-
marks and define corresponding pain levels. Notably, their
method attained an impressive accuracy rate of 92.71%,
demonstrating its effectiveness in tracking subtle expres-
sion changes across multiple facial regions. This break-
through offers a promising tool for assessing sheep pain
with enhanced precision and reliability.

This study on sheep pain evaluation offers significant in-
sights for human facial pain prediction. Its methods and
concepts provide new perspectives on analyzing dynamic
facial landmark changes, enhancing the understanding of



their correlation with pain levels.

2.5 Multimodal Fusion Models

Multimodal fusion models combine facial expressions
with other physiological signals (e.g., heart rate, electro-
dermal activity) to provide more comprehensive pain in-
formation and improve evaluation accuracy.

2.5.1 Pain Evaluation by Fusing Facial Videos and
Physiological Signals

In 2024, Gkikas and colleagues presented an innovative
multimodal framework for pain assessment leveraging fa-
cial videos and heart rate signals, grounded in Transform-
er architecture. Their study, titled ,,A Transformer-based
Multimodal Framework for Pain Assessment,” empha-
sized the synergy between behavioral and physiological
indicators. The facial video component extracted data
from 30 frames per clip, while functional Near-Infrared
Spectroscopy (fNIRS) measured oxyhemoglobin and
deoxyhemoglobin across 24 channels. This combined ap-
proach significantly bolstered the accuracy of pain estima-
tion, showcasing the potential of multimodal integration
in enhancing diagnostic capabilities.

This multimodal approach excels in amalgamating
pain-related data from diverse sources, offering a holistic
view of pain characteristics. This integration enhances the
precision and dependability of pain evaluations in clinical
settings. Specifically, multimodal fusion models adeptly
manage complex and varied pain presentations, demon-
strating significant benefits in differentiating subtle pain
intensities and pinpointing unique pain types.

2.5.2 Pain Recognition by Fusing Facial Expressions
and Non-Contact Physiological Signals

In 2024, researchers introduced an innovative non-con-
tact pain recognition system leveraging video-based data
analysis. This system integrates two key branches: one
focused on facial expressions and another on non-contact
physiological signals. By merging insights from both
visual and physiological cues, the multimodal approach
enhances the system‘s capability to capture a wide range
of pain-related features, ultimately boosting its accuracy
in detecting pain states.

This system offers a significant advantage by eliminating
direct patient contact, thus minimizing discomfort and the
risk of cross-infection. It enables real-time monitoring of
patients® pain responses, equipping doctors with timely
data to devise more precise pain management plans.
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3. Discussion

3.1 Challenges and Limitations

3.1.1 Limited Model Interpretability

Many Al models in healthcare operate as black boxes,
eroding clinical trust—a crucial factor for their successful
implementation. Although Wei et al. employed Gradi-
ent-weighted Class Activation Mapping (Grad-CAM) to
visualize pain-related facial areas, such as the periorbital
and nasal regions, this technique merely reveals where the
model focuses. It fails to elucidate how or why specific
features, like eyebrow furrowing or lip trembling, corre-
spond to particular pain intensities. For AI models with
more intricate designs, this limitation becomes even more
pronounced.

Transformer models rely on global attention mechanisms,
but the interpretation of attention weights (e.g., how tem-
poral dependencies between frames drive pain classifica-
tion) remains unaddressed;

GNN and point cloud models transform facial landmarks
into graphs or 3D point sets, but the relationship between
node/geometric alterations and pain intensity remains un-
clear.

Lack of interpretable decision-making hinders clinicians
from aligning model outputs with their expertise, imped-
ing use in critical cases like pediatric or impaired patients
unable to communicate pain.

3.1.2 Poor Applicability to Diverse Clinical Scenarios

Current models suffer from narrow generalizability due to
constraints in data sources and application scenarios:
Dataset homogeneity presents a critical challenge in
pain-focused Al research. Many studies utilize specialized
datasets tailored to specific pain conditions, such as UN-
BC-McMaster for shoulder pain or BioVid for heat pain,
often restricted to narrow age, etiology, or ethnic demo-
graphics. Consequently, systems trained on these homoge-
neous datasets, like an Al system achieving 78% accuracy
in scapulohumeral periarthritis, may demonstrate limited
generalizability. Clinical pain exhibits significant hetero-
geneity; for instance, elderly patients may display subtle
facial cues, whereas children might exhibit exaggerated
movements. Artificial intelligence models trained on a
unified dataset may encounter obstacles when adapting to
and accurately evaluating various pain manifestations in
actual clinical environments.

Multimodal models necessitate specialized, costly equip-
ment like 24-channel fNIRS, limiting their application to
hospitals with extensive resources. Non-contact multi-
modal systems alleviate patient discomfort but are suscep-
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tible to environmental factors such as lighting and motion
artifacts, rendering their effectiveness uncertain in busy,
noisy clinical environments like emergency rooms.

The WGNN model, while validated on sheep, faces chal-
lenges due to significant anatomical and expressive differ-
ences between sheep and humans, necessitating substan-
tial retraining for direct application to humans. Similarly,
models built on adult data may not adequately generalize
to pediatric patients or those with facial paralysis.

3.1.3 Data Dependency and Annotation Bottlenecks

High-performance models rely heavily on large-scale,
high-quality labeled data, which is scarce and costly to
obtain in pain research:

Pain levels are often annotated by patient self-reports or
clinician evaluations, which can lead to inconsistencies.
For instance, a patient might rate their pain as a 4/10,
while a clinician assesses it as a 3/10. This subjectivity
poses a challenge, particularly in cases where patients
cannot communicate, such as infants or coma patients, in-
troducing noise into the training data.

Label scarcity remains a significant challenge. Though
Issam et al. introduced AHDI to minimize labeled data de-
pendence, mainstream models like ResNet101-LSTM and
point cloud models still necessitate vast annotated frames.
Additionally, clinical data gathering faces privacy hurdles
like HIPAA, hindering access to diverse datasets.

Class imbalance in datasets is a persistent issue, particu-
larly when it comes to pain intensity levels. High-inten-
sity pain (levels 7-8) is less frequently represented than
low-intensity pain (levels 0-1). This disparity can skew
model training towards majority classes, reducing their
efficacy in detecting severe pain—a critical factor for
prompt clinical intervention. Wu et al. attempted to ad-
dress this imbalance through data balancing, highlighting
the necessity of addressing this issue to ensure accurate
pain detection [12].

3.2 . Future Prospects

3.2.1 Enhancing Interpretability with Explainable AI
(XAI)

To build clinical trust, future models should integrate XAl
techniques tailored to pain assessment:

Fine-tune feature interpretation by integrating Grad-CAM
with SHAP or LIME. These methods quantify facial fea-
ture contributions, such as eyebrow depression accounting
for 35% in pain level 5 classification.

Interpretable Module Design enhances model under-
standing. For Transformers, visualize temporal attention
weights to illustrate how frame changes influence pain
level updates. For GNNs, emphasize key landmark links,

such as the correlation between outer canthus-eyebrow
distance and 40% of pain level 4 predictions.

Create clinician-friendly dashboards displaying XAI re-
sults via intuitive formats like heatmaps on facial images
and feature contribution bar charts for swift validation.

3.2.2 Domain Adaptation for Enhanced Generalizabili-
ty

Domain adaptation (DA) is essential for overcoming data-
set homogeneity by transferring knowledge. Models can
leverage labeled data from a source domain, like labora-
tory datasets, to unlabeled or partially labeled real-world
clinical data. Key approaches involve adapting these mod-
els to different hospitals or populations effectively.
Develop cross-disease semi-supervised domain adaptation
techniques to generalize single-pain models, like those for
cancer pain, to multiple pain etiologies, by aligning fea-
ture distributions across diverse conditions.

Cross-device and cross-scenario domain adaptation (DA)
mitigates data variability from diverse cameras or physio-
logical sensors. By employing adversarial DA, a discrim-
inator network minimizes discrepancies between source
and target device data, enhancing accuracy.

Tailor DA frameworks to protect vulnerable groups like
children and the elderly. By integrating age/ethnicity me-
ta-features, this paper adjusts model parameters for equi-
table performance across demographics.

3.2.3 Deepening Multimodal Fusion with Advanced
Strategies

Current multimodal models primarily use simple feature
concatenation, which fails to prioritize informative modal-
ities. Future work should focus on:

Modality-Aware Attention Mechanisms dynamically ad-
just focus on different pain indicators. For severe pain,
they prioritize physiological signals like heart rate vari-
ability, as facial expressions may be concealed. For mild
pain, facial features are emphasized.

Enhance pain assessment by integrating diverse data:
voice groans, guarded movements, and EEG signals,
forming a comprehensive pain fingerprint.

Optimizing non-contact modality enhances physiological
signal accuracy, such as heart rate via remote photopleth-
ysmography, by minimizing environmental noise through
adaptive filtering, suiting home or limited-resource clini-
cal environments.

3.2.4 Model Lightweighting and Clinical Deployment

To bridge the gap between laboratory performance and
real-world use, models must be optimized for portability
and efficiency:

Lightweight architecture design involves techniques such
as knowledge distillation, which condenses large models



like ResNetl101 into more compact ResNetl8 versions,
and neural architecture search (NAS) to cut down param-
eters without sacrificing accuracy. The adaptive approach
of efficient networks can generate particularly lightweight
models that are especially suitable for mobile devices.
This capability has significantly enhanced some appli-
cations, such as bed monitoring systems based on tablet
computers.

Federated Learning ensures data privacy in medical train-
ing by allowing hospitals to train local models. Only mod-
el parameters are shared, preventing the need for sensitive
data transmission across institutions.

Conduct extensive multi-center clinical trials across di-
verse settings like hospitals and nursing homes to validate
models and secure regulatory approvals, such as FDA
clearance, adhering to healthcare standards.

4. Conclusion

Facial pain assessment aids vulnerable patients, prompting
Al integration in pain management. This study explores
deep learning for facial pain prediction, merging Al with
clinical evaluations.

The core contributions encompass five distinct model cat-
egories, each tailored for specific tasks. Advanced CNN
variations, notably the refined EfficientNet B4S integrated
with Mish activation and Inception v4, attain a remarkable
99.7% accuracy in detecting high-intensity pain. Mean-
while, the ResNet101-LSTM combination excels in bina-
ry classification, demonstrating its prowess. Spatio-tem-
poral fusion models, exemplified by AHDI, streamline
video processing and surpass previous methodologies in
effectiveness. Transformer-based frameworks enhance
global feature representation, with hybrid models yielding
accuracy rates between 79% and 82% in mixed-disease
classifications. Point cloud and Graph Neural Network
(GNN) models harness geometric properties, achieving
high accuracies of 84.98% and 92.71% on respective
datasets. Lastly, multimodal fusion models integrate facial
and physiological data, bolstering comprehensiveness and
minimizing patient discomfort.

These models, while effective, face significant limitations.
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Their complex architectures render them uninterpretable,
akin to black boxes. Clinical applicability is restricted
by homogeneous training data and specialized hardware.
Further challenges include data dependencies, annotation
issues, and privacy concerns.

Future studies aim to bolster Al-driven facial pain predic-
tion tools for non-verbal patients. Efforts will include en-
hancing interpretability via XAl, boosting generalizability
through domain adaptation, refining multimodal fusion,
and ensuring lightweight, privacy-preserving deployment
for clinical use.
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