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Abstract:

Electricity load forecasting is crucial for people’s daily
lives. It is critical to identify an appropriate model for
load prediction, as it is paramount to achieving reliable
results. This article aims to explore methods for predicting
short-term electricity load. The auto-regressive integrated
moving average (ARIMA) model is applied to analyze
the data, which consists of 2,182 consecutive hourly
load values starting from 0:00 on March 1st, 2003. Four
variables affecting electricity load are selected. Seasonal
influences are also taken into account, and a seasonal
ARIMA approach is adopted to mitigate bias caused by
seasonality. To evaluate the effectiveness of the method,
the Ljung-Box Q-test is performed on the residuals of the
forecasted values. The results indicate that the Seasonal
ARIMA model achieves the best fit, the short-term
prediction is reliable. The ARIMA model only requires
historical data to generate relatively accurate predictions,
eliminating the need for extensive datasets, and the process
is relatively simple. Overall, short-term electricity load can
be explained by both historical load values and past errors.

Keywords: Power load; ARIMA model; Ljung-Box
Q-test; Hypothesis test.

1. Introduction

divided into three types: short-term (<1 day/week),
medium-term (1 day/week—1 year), and long-term (>1

Electricity load is a critical factor determining the de-
velopment of a region. How to rationally allocate and
utilize the load is a key issue. Given human’s enor-
mous electricity demand, it is crucial to reduce losses
caused by inefficient load distribution. The load of
a power system refers to the electric power (MW,
kW) consumed by electrical equipment. Knowing the
changing trend of the power system load is a critical
issue, both positive and negative prediction errors
can increase power costs [1]. Load forecasting is

year) [2]. The load of a power system is influenced
by many factors, such as historical load, economic
conditions, and meteorological conditions. Load can
be forecasted by many factors.

To analyze the relationship between load and tem-
perature, regression analysis is typically employed
[3]. Din et al. used artificial neural networks (ANNs),
including feedforward neural networks (FNNs) and
recurrent neural networks (RNNs), work with deep
learning, are capable of short-term prediction [4].
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Ren et al. studied with an annual power load forecasting
system based on Support Vector Machines (SVM) and
optimized it using Particle Swarm Optimization (PSO) [5].
Support vector regression (SVR) have also been used to
optimize prediction algorithms to reflect the instantaneous
and overall impact of temperature on the power load [6].
To analyze the relationship between load and humidity.
Xie et al. used the Heat Index (HI) Model to investigate
the Impact of Relative Humidity (RH) on Electricity De-
mand [7]—with combined forecasting models also being
used to reduce the mean squared error of predictions.

This paper will focus solely on using the auto-regressive
integrated moving average (ARIMA) methodology ap-
plied to historical load data to derive probable future load
trends. Based on historical load data, one can identify the
most probable trends for future load forecasts. External
factors such as temperature and economic conditions will
not be considered. Seasonal ARIMA (SARIMA) will be
introduced to enhance the model, and a comparison of the
goodness-of-fit between the two approaches will be con-
ducted.

2. Data Source and Method

2.1 Data Source
The power system load data is sourced from PDB Electric
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Power Load History, which records hourly temperature
and electric demand (load) data from 2003 to 2014. The
data consists of 2,182 consecutive hourly load values y,
starting from 0:00 on March 1, 2003. For these data, there
are four major variables and they are shown in Table 1.

Table 1. Attribute Information

Variables Meaning

v, The power load at time ¢

Ay, First difference of the power load at time ¢
€ Random error at time ¢

Ae, First difference of the random error at time ¢

To apply autoregressive models, the data must have strong
stationarity. From the Time Series Plot-demand, it shows
no apparent trend. However, the data does not fluctuate
consistently around a constant mean, the series have sta-
tionarity, but it is weak. In Fig. 1, the first-differenced data
exhibits clear stationarity, oscillating around zero. The
ADEF test for unit roots yields a p-value below 0.1%, indi-
cating less than 0.1% probability of the series containing
a unit root. The current values show strong dependence
on historical values, with persistent impacts from random
errors that do not diminish over time. These results con-
clusively demonstrate stationarity in the series.

—— demand

LI
NN D
S

&7 457 DY A A 4G 0O O Y 7 AR AP WYY (D
"\,”;h‘)‘o’\‘b%,&\}@@\‘}.{g.@

N RP R f

hour

Fig. 1 Time Series Plot-demand and Time Series Plot-demand first difference
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2.2 Method
The author now employs an ARIMA model to forecast the

first-differenced load data [8]. Since the load at time ¢ is
collectively determined by all preceding load values, one
can analyze the autocorrelation coefficients to observe
how their influence decays over increasing time lags. This



relationship is quantified through the autocorrelation func-
tion (ACF):

Z(yz _J_})(ytﬂ' _)_/)
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Z(yt _)7)

In the equation above, y represents the mean load value.

(1

This allows calculation of autocorrelation coefficients for
all orders. Additionally, one must separately consider the

influence of the load at 7 hours before time ¢ y, . on the
load at time t y,, quantified by the partial autocorrela-

tion coefficient f,. This relationship is derived from the
Yule-Walker equation.
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The partial autocorrelation coefficients can be calculated.

3. Result

3.1 ARIMA Model

Figure 2 shows that the PACF exhibits second-order trail-
ing characteristics, with over 95% of lag terms falling
within two standard deviations after lag 2, thus p=2 is
selected. The ACF in Fig. 2 displays strongly periodic
trailing behavior, leading people to initially choose g =1
. Therefore, one can employ the ARIMA(2,1,1) model for
the historical load data.
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Fig. 2 ACF graph and PACF graph
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The coefficients in Table 2 represent the midpoint values
of each parameter’s 95% confidence interval. There is a
97.5% probability that one cannot reject the null hypothe-
sis that the constant term has no effect on the model, while

there is less than a 0.1% probability that one cannot reject
the null hypothesis for both the AR and MA parameters
having no effect. Therefore, the final model is

Ay, =0.951Ay, , —0.316Ay, , +0.482¢, , 3)

Table 2. ARIMA(2,1,1) Model Parameter Table

Term Symbol Coefficient Std. Error z-value p value 95% CI
Intercept c -0.447 14.137 -0.032 0.975 -28.154 ~ 27.260
al 0.951 0.030 31.697 0.000 0.892 ~ 1.009
AR Term
a2 -0.316 0.036 -8.870 0.000 -0.386 ~ -0.246
MA Term B1 0.482 0.030 16.245 0.000 0.424 ~ 0.540
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The predicted values for the next 10 periods can be ob-
served that the predicted values exhibit relatively small
residuals compared to actual values within the first 2
forecast periods. However, the deviation becomes signifi-
cantly larger beyond 2 periods. This occurs because the
moving average order (q) in the MA and AR components
of the model is insufficiently specified, leading to residual
autocorrelation.

To quantitatively assess this, the Ljung-Box Q-test was

employed to test the null hypothesis that the residuals
show no autocorrelation up to lag k. The test results indi-
cate that the hypothesis of zero autocorrelation in resid-
uals cannot be rejected (p > 0.05), the residuals are not
white noise. From Table 3, the p-value of Q1 is 0.380,
indicating that the probability of residual autocorrelation
being zero at lag order k=10 is far below 0.1%. This leads
to relatively large residuals.

Table 3. ARIMA(2,1,1) Ljung-Box Q-test Table

order statistic p value order statistic p value
Ql 0.770 0.380 QIl5 263.236 0.000%*
Q3 1.538 0.674 QI8 403.253 0.000%*
Q6 37.015 0.000%* Q21 408.458 0.000%*
Q9 195.674 0.000%* Q24 1787.152 0.000%*
QI12 209.787 0.000%** Q27 1794.559 0.000%**
When the moving average order q is increased to 2, the  The formula can be got:

improved model becomes ARIMA(2,1,2), see Table 4.

Ay, =—0.113+1.625Ay, , —0.731Ay,_, —0.364¢,_, —0.636¢,_, 4

The predicted values for the next 10 periods have a signif-
icant reduction in residuals between predicted and actual

values, though substantial residuals persist after the sec-
ond time period.

Table 4. ARIMA(2,1,2) Model Parameter Table

Term Symbol Coefficient Std. Error z-value p value 95% CI
Intercept c -0.113 0.030 -3.739 0.000 -0.173 ~ -0.054
al 1.625 0.012 136.665 0.000 1.602 ~ 1.649
AR Term
a2 -0.731 0.011 -64.989 0.000 -0.753 ~-0.709
p1 -0.364 0.278 -1.311 0.190 -0.908 ~ 0.180
MA Term
B2 -0.636 0.177 -3.586 0.000 -0.983 ~-0.288

From Table 5, the p-value of Q1 is 0.656, indicating sig-
nificantly reduced residual autocorrelation compared to
the ARIMA(2,1,1) model, demonstrating better fitting per-
formance. In subsequent improvements, one will not only

consider the previous terms at time t for load forecasting,
but also incorporate seasonal influences in the prediction
process.

Table 5. ARIMA(2,1,2) Ljung-Box Q-test Table

order statistic p value order statistic p value
Ql 0.198 0.656 Q15 196.504 0.000**
Q3 8.248 0.041* QI8 268.914 0.000**
Q6 15.656 0.016* Q21 276.422 0.000**
Q9 97.942 0.000%** Q24 1558.475 0.000%**
Q12 144.458 0.000%** Q27 1570.980 0.000%*




3.2 SARIMA Model

Since the autocorrelation coefficient R(24) exceeds 0.84,

indicating strong correlation, this confirms a 24-period
cycle. The load exhibits strong periodicity, necessitating
consideration of seasonal effects in forecasting. Given that
the partial autocorrelation plot shows clear second-order
trailing, the autoregressive order p remains at 2, while the
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moving average order q is set to 3, considering only the
load and error from one cycle prior.

Therefore, with seasonal autoregressive order P and
seasonal moving average order Q both set to 1, and
without seasonal differencing, the model is specified

as SARIMA(2,1,3)(1,0,1),, [9]. The relevant parameters

are shown in Table 6. Note that AIC = 28996.257 and BIC
=29041.757, the formula can be got as

Ay, =—0.069—0.223Ay, , +0.123Ay, , +1.331c,_, +0.488¢_, + Ay, ,, —0.827¢_,, (5)

Table 6. SARIMA (Seasonal ARIMA) Model Parameters Table

Term Symbol Coeflicient Std. Error z-value p value

intercept 0.069 0.000 null null null ~ null

arL1 -0.223 0.007 -32.657 0.000 -0.237~-0.210

arL2 0.123 0.001 124.669 0.000 0.121~0.125

ma.L1 1.331 0.027 48.753 0.000 1.278 ~ 1.385

ma.L2 0.488 0.029 16.915 0.000 0.431 ~0.544

ar.S.L24 1.000 0.000 65581.428 0.000 1.000 ~ 1.000
ma.S.L24 -0.827 0.012 -70.074 0.000 -0.851 ~-0.804

sigma2 37737.732 373.501 101.038 0.000 37005.684 ~ 38469.781

The forecast values of next 10 periods exhibit small re-
siduals compared to actual observations, indicating strong
short-term prediction performance. Furthermore, the
Ljung-Box Q-test provides quantitative validation by de-
termining the probability of accepting the null hypothesis
that residual autocorrelations up to lag k are zero, thereby
assessing the model’s goodness-of-fit.

Using the same method to perform the Ljung-Box Q-test
for the SARIMA(2,1,3)(1,0,1),, Ljung-Box Q-test one
can observe that Q1 results showing significantly higher
p-values (0.918), one concludes that the SARIMA mod-
el demonstrates stronger short-term fitting performance
compared to the two ARIMA variants [10].

While increasing the autoregressive order (p) and moving
average order (q) generally improves model fit, this comes
at the cost of elevated computational complexity. The
modeling objective therefore becomes identifying optimal
(p,q) parameters that balance.

One can use the formula BIC=- 2/n(L)+Kln(n) to calcu-
late BIC value. A lower value indicates greater model effi-

ciency. Thus, BIC,,,, .21, = 31794.068 , BIC,,, .12 =

31507.566 , and BIC pnasion, = 29041757
Considering both model complexity and goodness-of-fit,
the SARIMA(2,1,3)(1,0,1)

superior efficiency.

,, configuration demonstrates

4. Conclusion

This study utilizes load data from 2,182 consecutive hours
between 00:00 on March 1st, 2003 and 22:00 on May
30th, 2003, and forecasts load through first-order differ-
encing using ARIMA models, which demonstrate accurate
and effective short-term prediction performance. During
the analysis, the paper first employed ARIMA models
to predict load variation patterns, selecting appropriate
autoregressive order (p) and moving average order (g )
through autocorrelation and partial autocorrelation plots.
The results show that when p=2 and ¢ =2, the mod-
el achieves good fitting performance without becoming
overly complex. Due to the periodic nature of load data,
seasonal ARIMA models were subsequently used for im-
provement. This research can effectively predict short-
term load variations within a single day. However, there
are some limitations: larger residuals occur when other
factors like temperature reach extreme values since they
weren’t considered, and there are issues like relatively
small data volume. Additionally, although the data sourc-
es are somewhat outdated, the model can already capture
the short-term variation patterns of the load, which can
be used to predict current data. It could also be combined
with SVM to achieve more accurate predictions.
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