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A Survey of Textual Adversarial Attacks
and Defenses on Large Language Models
(LLMys)

Abstract:

The broad use of large language models (LLMs) like GPT-
4 and LLaMA in dialogue systems, content generation, etc.,
causes security flaws of these models to rise. The current
study examines progress made in recent years on textual
adversarial attacks and defenses for LLMs, focusing on
special attack vectors and defensive techniques targeting
LLMs. Firstly, a ‘Target—Technology—Scenario’ three-
dimensional attack classification framework that mainly
consists of typical kinds of attacks including PIA and
JBA. Secondly, defense mechanisms from two different
perspectives: alignment enhancement in the training phase
and security controls in the inference phase. In addition,
by conducting experiments using benchmark datasets
(HELM), existing technical drawbacks and future work
directions are also discussed. The aim is to offer guidance
and references for subsequent work on theoretical studies
of LLM security and promoting the building of stronger
NLP systems.
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medical advice, but their security risks are becoming
more serious, and the GPT-4 technical report also
states that it is still vulnerable to adversarial attacks
after several rounds of security optimizations, which

1. Introduction

1.1 Research Background

After the birth of GPT-3 in 2020, large language
models have made huge breakthroughs in terms of
capabilities due to the increased parameter scales
(over 100 billion), and also benefited from the mas-
sive amount of texts for pretraining.[1] They are
currently being used extensively, ranging from in-
telligent customer service, code generation, to even

can produce harmful contents and information leak-
age risks.[2].

Compared with traditional NLP models such as
BERT, the adversarial vulnerabilities of LLMs pres-
ent new characteristics: first, the singularity of the
interaction interface, which relies on prompts as the
main input channel, making Prompt Injection a major



attack vector; second, the loss of control over generation
capabilities, as the long-text generation feature may be
abused to spread false information; third, the opacity of
the reasoning process, and the introduction of the Chain-
of-Thought mechanism increases the difficulty of attack
traceability [3,4]. These characteristics make it difficult to
directly migrate traditional NLP adversarial defense meth-
ods.

1.2 Research Status and Contributions

Current research about this field is mainly focused on
the security of traditional NLP models from adversarial
attacks’viewpoint or the general security issues of the
models in large-scale language models (LLMs), but not
much work related to LLM-based text-specific adversarial
attacks and defenses has been proposed. Prior works like
Shayegani et al. (2023) and Liu et al. (2024) mainly focus
on the systemic analysis of the vulnerability of LLMs [3,4].
The primary findings from this study include:
Constructing a “target-technology-scenario” 3D classifi-
cation model on adversarial attack methods against LLM
text.

- Establishing a “target-technology-scenario” three-dimen-
sional classification system for LLM textual adversarial
attacks.

- A systematic comparison of the effectiveness difference
between defense mechanisms on training and inference
phases.

- Identify present technical barriers on basis of the result
of the most recent benchmarks’dataset evaluation.

2. Technical System of Textual Adver-
sarial Attacks on LL.Ms

Textual adversarial attacks on large language models have
clear target positioning, use many kinds of technologies
and are suitable for different scenarios. Their main job is
to utilize the inherent weakness in LLM instruction under-
standing, content creation and reasoning mechanisms to
establish real powerful attack chains.

2.1 Attack Targets: From Function Hijacking to
System Destruction

Three goals for the attackers may be distilled as three pro-
gressive targets within the attack threat hierarchy, ranging
from the local function tampering (level one) to the over-
all system destruction (level three).

2.1.1 Function Hijacking Attacks
Prompt injection alters the model’s actions by forcing ex-

tra malicious commands, one instance is the “ignore the
above rules” kind of cheating attack used to dodge filters
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[5]. Such cheating works because these models just follow
instructions, meaning they’ll take new input into account,
no matter how outlandish or conflicting. Similar input poi-
soning attacks can include hiding the latent prompt within
job application, getting the HR Al to generate wrong eval-
uations [6]. When prompt injection uses a complicated
reasoning chain contamination attack that inserts incorrect
premises into the model’s reasoning steps to prove a point,
then results show a math reasoning error rate up to 40%-+
higher.[7].

2.1.2 Content Misuse Attacks

Such attacks are directed toward pushing models into
creating various harmful contents such as hatred, and fake
news. Recent research from Carlini et al. [8] reported that
even safety-aligned LLMs could still be tempted to pro-
vide instructions for carrying out attacks on computer net-
works using adaptive attack strategies. Privacy leak attack
takes advantage of an LLM’s memory of the training set
and uses well-crafted prompts to get the LLM to extract
the original training data, with certain examples having
already appeared in the medical field.[9].

2.1.3 Robustness Degradation Attacks

Adversarial prompts will induce a model to output ran-
dom and disorderly results by making some small modifi-
cations like synonym replacements [10]. Unlike in imag-
es, for textual adversarial samples, they should maintain
some meaning, so usually libraries like WordNet and
back-translation techniques are used to generate them.[11]
For backdoor attacks, the adversarial attacks can be im-
planted into fine-tuned models with certain triggers acti-
vated at test time (such as specific symbol combinations).
And researchers proved that its attack success rate could
be over 90%.[12].

2.2 Technical Paths: Confrontation between
Gradient Dependence and Black-Box Intelli-
gence

The development history of attacks and attack technology
indicates that with the increase in the degree of model in-
formation mastered, different technical routes are formed.

2.2.1 Gradient-Based Attacks

Traditional methods such as PGD are limited by black-box
characteristics in LLM scenarios (commercial models usu-
ally do not disclose gradients). Researchers have turned
to substitute model attacks: first training small models
to simulate LLM behaviors, then generating transferable
adversarial samples based on gradients [10]. Trameér et
al. proved in their review of adversarial machine learning
that adversarial samples generated on BERT have a 35%
transfer success rate on other models [10].
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2.2.2 Gradient-Free Attacks (Black-Box Dominated)

Discrete search methods employ genetic algorithms and re-
inforcement learning to probe optimal perturbations which
yields 62% success rate on LLaMA-7B [11], therefore
these methods are deployed into some public attack tools;
Semantic perturbation makes use of LLMs’insufficient
robustness in sentences with slight patterns modification
to obtain different outputs from models while maintaining
its basic meanings [11]. Prompt engineering utilizes the
alignment weakness, for instance one could use C&W'’s
adaptive attack technique to optimize prompts adaptively
till the target label has been achieved, triggering targets to
break moral rules.[8].

2.3 Scenario Adaptation: From General Attacks
to Domain Customization

The attacks’impact depends greatly upon what application
scenario they are applied in. That’s why different methods
of attacks need to be applied under different circumstanc-
es. Zero-shot attacks are not tuned specifically toward any
model, just like how general jailbreaking prompts such
as those effective for both GPT-4 and Claude [8] work.
Customized attacks target specific domains, for instance
drug-recommendation, they bypass restrictions put in
place by injecting in specific domain terms [9]. In terms
of recent research, the researchers find that by using rein-
forcement learning to tweak an attacker model, a success
rate of 94.97% can be reached against GPT-3.5, which
illustrates how automated attack trends are advancing to-
wards a more powerful development.[7].

3. Hierarchical Protection System for
Textual Adversarial Defense on LL.Ms

To defend against different attack methods, it is necessary
to develop a complete defense system protection cover
from the whole life cycle of model training, inference ex-
ecution and application operation, to build a layered secu-
rity barrier.

3.1 Training Phase: Consolidating the Inherent
Security Foundation of Models

Improve model robustness from the source by doing
alignment optimization as well as structural improvement.

3.1.1 Alignment Enhancement

RLHF reinforcement learning human feedback makes
the security preference stronger. OpenAl employed this
technique and thus succeeded in cutting the probability of
undesirable outputs from the highly advanced model GPT-
4 to just one in seven cases—71% [13]. Adversarial data

injection injects adversarial prompts into the finetuned
data and research findings show that its success rates for
this purpose have declined by approximately 40%.[14]
However, excessive security training might cause a re-
duction in performance such as GPT-4’s loss of 8% in the
accuracy score for medical knowledge-related questions.
(2].

3.1.2 Model Structure Optimization

Prompt isolation can parse semantics from inputs and iso-
late instructions and contents; relevant works have been
presented on such subjects in top conferences [15]; causal
reasoning enhancement presents a logical verification
module to examine the chain-of-thought steps of logical
reasoning, hence reducing adversarial success rate in
mathematical reasoning task by 25%.[16].

3.2 Inference Phase: Building Real-Time Risk
Control Barriers

Catch any attacks in real time through model’s input san-
itization as well as model’s output control during its use
phase.

3.2.1 Input Security Gateway

Rule-based detection adopts regular expressions to detect
sensitive words; however, these can be bypassed with
similar or near homophones.[11] Machine learning de-
tectors train classifiers on datasets to determine malicious
prompts and reach an accuracy of 78%, based on the
HELM dataset for BERT-based detectors.[17] The dynam-
ic prompt review uses a real-time context coherent analy-
sis method for defense, which can achieve an approximate
defense rate of 65% on jailbreaking.[14].

3.2.2 Output Quality Control

There are many techniques that constrain text genera-
tion: instructive methods such as “Please provide factual
information” [2] can reduce the quantity of untrue out-
put by 50%, and watermarking [2] inserts indiscernible
identifiers into text which have been used to track down
over 90% of sources abusing generated content. Another
solution is permission control according to the principle
of least privilege which gives only the necessary plug-in
calls to dedicated API tokens to mitigate the extent of the
damage by prompt injection.[15].

3.3 Emerging Defense Directions

Interpretability-driven defense discovers attack pathways
via attention visualization; prior work has shown that
malicious prompts tend to trigger certain sets of neurons
inside the model [18]. Federated learning shifts adversary
training from centralized servers to edge devices with the



intention to minimize the risk vectors on central servers;
federated learning has been demonstrated as effective
for LLMs in medicine [19]. Google’s SAIF employs full
life-cycle security, including data encryption and model
isolation; SAIF thus comprises strong layers of defense.
[20].

4. Experimental Comparison and Per-
formance Evaluation

4.1 Benchmark Datasets and Evaluation Indi-
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cators

General evaluation adopts “Adversarial”, which belongs
to the HELM and the OpenAttack-LLM dataset including
more than 10,000 malicious prompts; domain datasets
such as Equity Med QA used in the medical field also con-
tain multiple adversarial medical question sets for testing
bias-related attacks, with key indicators as follows:

- Attack effectiveness: Attack Success Rate, Toxicity
Score (HateSpeechClassifier)

- Defense cost: Detection Latency, Generation Quality
Loss (BLEU score, Perplexity)

4.2 Comparative Analysis of Typical Methods

Table 1 shows the performance comparison of mainstream attack and defense methods:

Representative|GPT-4 Attack Suc- |Corresponding De- | HELM Detection
Attack Method Performance Loss
Study cess Rate fense Method Rate
L . Dynamic Prompt Generation Speed
P t Inject Liu et al. [6 85% 78%
rompt Injection iu et al. [6] () Review 0 115%
Discrete Search At- . Adversarial Data .
Tramér et al. [11] 62% .. 65% Perplexity 18%
tack Injection
Model Wat k-
Backdoor Attack Chen et al. [13] 90% ing ¢l Yatermar 50% None
Multi-turn Jailbreak- R S d
VUL AT o ini etal [9] | 72% RLHF Enhancement | 68% esponse spee
ing Attack 120%

From the data above, it can be seen that there are obvious
deficiencies in existing defences. The detection rate of
backdoor attacks is merely half (50%), and some highly
defended models also have a significant problem with de-
terioration in generation quality [13]. Even after security
optimization, GPT-4 can improve its resistance to basic
attacks, but it still cannot resist against automated attack
tools.

5. Challenges and Future Directions

5.1 Existing Challenges

The asymmetry between offense and defense is very se-
rious: ordinary users can attack with the help of prompts,
but effectual defense needs deep modification on models;
semantic evasion can take advantage of the skill of LLMs
to understand metaphors and irony, therefore some rules
do not work, such as a substitution using “special chem-
ical” instead of “poison” bypasses filtering entirely; it is
also hard to make horizontal comparison due to no certain
evaluation criteria, meanwhile, current dataset lacks cov-
erage of multi-turn dialogue attacks.

5.2 Future Research Directions

Dynamic offense-defense games need to be equipped
with adaptive defenses for updating of defensive mea-
sures based on the adversarial meta-learning procedure.
Multimodal defense extension means that the joint text
and image attacks scenario is required to be merged with
cross-modal detection technologies like visual captcha-as-
sisted text verification. Integration of ethical compliance is
needed to code the ethical regulations into the executable
security rules of the model, thus forming an inseparable
integration between technology and law.

6. Conclusion

The study conducted an all-round study and summary of
text adversarial attack and defense on LLM, explained
main types of dangers including prompt injection attack
and jailbreak attack, analyzed existing defensive mech-
anisms like RLHF and dynamic reviews, which indicate
that now there’s still many unreconciled conflicts among
attack detection rate, generation quality of models etc.,
and there is a desperate need of new security measures
in the future and more collaborative study should be ex-
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pected from industry-academy linkage to promote the
construction of next-generation comprehensive security
protection for large language model.

References

[1] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., ... & Amodei, D. (2020). Language Models are
Few-Shot Learners. Advances in Neural Information Processing
Systems, 33, 1877-1901.

[2] OpenAl. (2023). GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774.

[3] Shayegani, M., Mamun, M. S., & Jajodia, S. (2023). Survey
of Vulnerabilities in Large Language Models Revealed by
Adversarial Attacks. ACM Computing Surveys, 56(3), 1-38.
[4] Liu, Y. P, Jia, Y. Q., Geng, R. P, Jia, J. Y., & Gong, N. Z.
Q. (2024). Formalizing and Benchmarking Prompt Injection
Attacks and Defenses. In Proceedings of the 33rd USENIX
Security Symposium (pp. 123-140), Philadelphia, PA, USA.

[5] Liu, Y., Deng, G., Li, Y. K., Zhang, Y., & Wang, X. (2023).
Prompt Injection Attack Against LLM-Integrated Applications.
In Proceedings of the 16th ACM Workshop on Artificial
Intelligence and Security (pp. 45-56), Los Angeles, CA, USA.
[6] Greshake, K., Abdelnabi, S., Mishra, S., Endres, C., Holz,
T., & Fritz, M. (2023). Not What You’ve Signed Up For:
Compromising Real-World LLM-Integrated Applications with
Indirect Prompt Injection. In Proceedings of the 16th ACM
Workshop on Artificial Intelligence and Security (pp. 79-90),
Los Angeles, CA, USA.

[7] Jha, P., Sharma, A., & Jajodia, S. (2024). LLM Stinger:
Jailbreaking LLMs Using RL Fine-Tuned LLMs. IEEE
Transactions on Dependable and Secure Computing, 21(5),
4559-4573.

[8] Carlini, N., Jagielski, M., & Tramér, F. (2024). Jailbreaking
Leading Safety-Aligned LLMs with Simple Adaptive Attacks.
In Proceedings of the 41st International Conference on Machine
Learning (pp. 3245-3258), Vienna, Austria.

[9] Chen, S. Y., Pfohl, K., Cole-Lewis, H., & Lewis, C. (2024). A
Toolbox for Surfacing Health Equity Harms and Biases in Large

Language Models. Journal of Biomedical Informatics, 154(C),
104644.

[10] Tramér, F., Boneh, D., & Poovendran, R. (2018).
Adversarial Machine Learning. In Handbook of Cyber Security
(pp. 1-28). Springer.

[11] Zhang, H., Yuan, X., & Li, X. (2020). A Survey of
Adversarial Attacks and Defenses in Deep Learning. IEEE
Access, 8, 151613-151633.

[12] Chen, X., Liu, X., & Li, Y. (2023). Backdoor Attacks for
In-Context Learning with Language Models. In Proceedings of
the 40th International Conference on Machine Learning (pp.
2563-2575), Honolulu, HI, USA.

[13] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., ... & Amodei, D. (2022). Training Language
Models to Follow Instructions with Human Feedback. Advances
in Neural Information Processing Systems, 35, 27730-27744.
[14] Anthropic. (2024). Many-Shot Jailbreaking: Exploiting
Long Context Windows in LLMs. Anthropic Research
Blog. https://www.anthropic.com/research/many-shot-
jailbreaking

[15] Hao, Y., & Liu, X. G. (2024). InjeCGuard: Benchmarking
and Mitigating Over-Defense in Prompt Injection Guardrail
Models. IEEE Transactions on Artificial Intelligence, 5(2), 1-14.
[16] Wang, Z., Li, Y., & Zhang, Y. (2024). Stop Reasoning!
When Multimodal LLMs with Chain-of-Thought Reasoning
Meets Adversarial Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp.
1234-1243), Seattle, WA, USA.

[17] Wang, L., Li, Y., & Zhang, Y. (2023). Holistic Evaluation of
Language Models. Machine Learning and Systems, 5, 1-14.

[18] Li, J., Liu, X., & Li, Y. (2024). Interpretable Attacks
on Large Language Models via Attention Visualization. In
Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (pp. 1234-1243), Singapore.

[19] Liu, X., Zhang, Y., & Li, Y. (2024). Federated Learning for
LLM Security: A Case Study in Healthcare. IEEE Journal of
Biomedical and Health Informatics, 28(5), 1-14.

[20] Google AL (2023). Secure Al Framework (SAIF): A New
Approach to Al Safety. IEEE Security & Privacy, 21(6), 12-21.





