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Abstract:

In order to address issues including resource limitations,
data heterogeneity, and computational inefficiency, this
study explores the optimization of lightweight federated
learning (FL) in edge-cloud collaborative contexts. Due
to non-IID data distributions, high communication costs,
and restricted device capabilities, traditional federated
learning frameworks perform below expectations in
edge environments. This study analyzes the background
and challenges, elaborates on definitions and theories,
emphasizes the classification of federated learning and
finally provides several optimization solutions. The
objective is to provide strong support for federated learning
applications in resource-constrained scenarios while
efficiently increasing the operational efficiency of federated
learning systems in edge-cloud environments. The results
lay the groundwork for future studies on scalable and
effective distributed learning systems by highlighting
the promise of lightweight FL in applications like smart
healthcare and industrial Internet of Things (IoT). In
particular, it underscores the need for adaptive mechanisms
that dynamically adjust computation and communication
strategies based on the capabilities of edge devices.

Keywords: Edge-cloud collaboration; Federated learn-
ing; Communication protocols; Optimization Methods.

1. Introduction

puting will attain $274 billion. The necessity for re-
al-time data processing in fields including intelligent

Due to the rapid proliferation of Internet of Things
(IoT) devices and the extensive integration of artifi-
cial intelligence technology, worldwide data gener-
ation is increasing at an annual rate above 30%. By
2025, the global count of IoT devices will surpass
41.6 billion, while the market valuation of edge com-

transportation, industrial automation, and smart cities
is becoming progressively critical. Federated learning
(FL), an innovative paradigm of distributed machine
learning, has attracted considerable attention and
widespread application in fields such as edge com-
puting and deep learning. By enabling collaborative
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model training across multiple participants while preserv-
ing data privacy, FL effectively mitigates the challenge of
data silos [1]. However, the process of federated learning
involves multi-party collaborative management, and es-
tablishing a distributed, equitable, trustworthy, and secure
consensus system is a critical challenge that must be re-
solved in its application. The data in federated learning
comes from different users, each of which may employ
different sampling locations, different sampling methods,
and different amounts of collected data [2].

Traditional federated learning also faces challenges in the
edge-cloud collaboration scenario. The computational re-
sources of edge servers are inherently constrained. As the
number of mobile terminals continues to grow rapidly and
the complexity of application functionalities increases, the
queuing time associated with offloading computing tasks
to edge servers for processing has significantly extended,
thereby leading to an increase in overall computing delay.
Edge devices are typically characterized by weak comput-
ing power, small storage, and energy consumption sen-
sitivity. Smart thermostats in smart home scenarios have
CPUs with a clock speed of only tens of MHz, a storage
capacity of only hundreds of KB, and rely on battery pow-
er. In medical imaging diagnosis, CT scanning devices
in primary hospitals have preliminary feature extraction
capabilities, but are limited by GPU computing power
and cannot complete local training of complex models
such as ResNet-50. Mobile edge networks are character-
ized by large bandwidth fluctuations, high latency, and
significant packet loss rates. In the industrial Internet of
Things scenario, within the coverage of 5G base stations
in factory workshops, the upload bandwidth of devices
fluctuates dynamically between 5 and 50 Mbps, and the
latency ranges from 10ms to 200ms. Traditional federated
learning, which uses synchronous aggregation, requires
all edge nodes to upload model parameters within a fixed
time window, resulting in low-bandwidth nodes becoming
system bottlenecks.

The problem of data heterogeneity is particularly promi-
nent in edge-cloud collaboration. There is data heteroge-
neity on the client side, that is, data from different clients
varies in distribution, characteristics, samples, and quan-
tity [3]. For example, in the field of financial risk control,
the transaction data of banks in the eastern coastal areas
is characterized by high frequency and small amounts,
while the data of banks in the central and western regions
is mainly low frequency and large amounts. This kind of
Non-IID data leads to a 15%-20% drop in the prediction
accuracy of global models in local scenarios. Traditional
federated learning aggregates models through weighted
averages and struggles to adapt to data heterogeneity, forc-
ing systems to increase communication rounds to improve

model performance and creating a “precision - efficiency”
vicious cycle.

This paper will elaborate on the theoretical foundations,
classify the types of federated learning, and provide de-
velopment recommendations for lightweight federated
learning.

2. Theoretical Foundation

2.1 Definition of Federated Learning

To address the issue of data silos and prevent the direct
exposure of sensitive data during transmission, Google
first introduced Federated Learning (FL) in 2016 [4].
Federated Learning is a collaborative machine learning
framework that involves the participation of multiple enti-
ties. Through coordinated efforts, these participants jointly
train a global model that achieves performance compara-
ble to that of centralized training, while each party retains
control. FL integrates advanced privacy-preserving tech-
nologies such as homomorphic encryption, differential
privacy, and secure multi-party computation to enhance
data security and protect user privacy during the collabo-
rative learning process. For instance, differential privacy is
applied to add noise during parameter updates to prevent
reverse inference attacks. Homomorphic encryption en-
ables direct computations on encrypted data while ensur-
ing the security of intermediate results. Federated learning
is now widely used in domains such as intelligent trans-
portation systems, medical imaging analysis, and financial
anti-fraud, and it is becoming a vital technological avenue
to address issues with data silos and privacy protection [5].
From a technical architecture perspective, federated learn-
ing employs a “client-server” collaborative model. Clients
train models using local data while transmitting only
encrypted gradients or parameter updates to the central
server. After aggregating these updates using appropriate
algorithms, the central server updates the global model,
which is subsequently distributed back to the participating
clients for further iterations. Through repeated rounds of
optimization, this approach enhances model generalization
performance while effectively preventing the disclosure of
raw data. The principle of “data remains localized while
the model evolves” constitutes a core tenet of federated
learning. Under this framework, each participant transmits
only gradient updates or model parameters to the central
server, which performs aggregation to refine the global
model and then disseminates the updated model back to
all participants for the next round of training.



2.2 Edge-Cloud Collaboration

An developing computing paradigm called edge-cloud
collaboration technology uses cloud and edge computing
to gather, process, and analyze different kinds of business
data in real time. Low latency, high energy efficiency
computing services are achieved through the dynamic
allocation of tasks and resources. Edge nodes (edge serv-
ers, loT devices) handle real-time, large volumes of local
tasks (video surveillance, industrial sensor data), while
the cloud centrally handles non-real-time tasks such as
global analysis and long-term storage. The necessity of
edge-cloud collaboration stems from the challenges posed
by the explosive growth of IoT data. In the traditional
cloud computing model, massive amounts of data need to
be transferred to the cloud for processing, resulting in in-
creased pressure on network bandwidth and higher laten-
cy. In the power grid, edge-cloud collaboration enhances
data backup efficiency and security by encrypting moni-
toring data and uploading it to the cloud, while processing
and distributing data storage at the edge.

2.3 Lightweight Federated Learning

Federated learning and edge computing are combined to
create lightweight federated learning, which primarily ad-
dresses communication and processing power constraints
so that devices with limited resources may take part in
federated learning. By lowering computational, storage,
and communication overhead through weight quantiza-
tion and channel pruning, lightweight federated learning
speeds up the federated learning process on IoT devices
and eventually achieves effective training of global mod-
els with tolerable accuracy loss.

In communication optimization, federated learning opti-
mizes communication efficiency through methods such
as model compression, data compression, and communi-
cation scheduling, reducing the amount of data transmis-
sion between devices and enhancing transmission speed.
Lightweight federated learning employs sparse update and
federated averaging algorithms (FedAvg). Sparse updates
involve transmitting only non-zero gradients, thereby
reducing communication traffic. FedAvg computes a
weighted average of parameters from each device, hence
reducing the frequency of global model changes. Het-
erogeneous computing support is essential for achieving
lightweight federated learning. Edge devices may utilize
diverse hardware architectures, such as ARM processors
and NPUs, and thus require deployment across platforms
using a unified framework.
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3. Classification of Federated Learning

Three forms of federated learning can be distinguished
based on variations in data distribution: Horizontal feder-
ated learning is applicable to situations when the samples
are varied but the characteristics are identical.[6]; Vertical
federated learning targets overlapping samples with dis-
tinct features, such as credit assessments between banks
and e-commerce platforms[6]; Federated Transfer Learn-
ing (FTL) is a specific type of federated learning that
enhances target domain model performance by utilizing
information from source domains when feature and sam-
ple spaces have little overlap [7].

3.1 Horizontal Federated Learning

Horizontal federated learning mainly addresses the “iso-
lated data island” problem [8]. It achieves efficient ag-
gregation of data value through collaborative expansion
of distributed sample Spaces, especially for cross-agency
collaboration scenarios where feature dimensions are
highly similar but sample distributions have significant
regional or group differences. By training models on local
devices and only uploading feature parameters to a cen-
tral server for aggregation and optimization, horizontal
federated learning’s technological core aims to make user
data accessible but invisible. All participants must have
the same feature space for horizontal federated learning
to work. However, the sample sets either have very little
or no intersection. Its inherent suitability for vertical busi-
nesses with data barriers stems from this fact. The central
server combines these local updates using a secure aggre-
gation algorithm, creates global model parameters, and
feeds them back to each participant after each participant
completes forward and back propagation computations in
the local environment. The central server only receives the
encrypted gradient information or the amount of model
updates. This process forms a closed-loop iteration until
the model converges. Lateral federated learning, for exam-
ple, enables secure data transmission and reliable commu-
nication by having participants train the model locally and
register it at a key generation center and then use common
parameters for authentication and session key negotiation.
Under the condition of dispersed user data, the risk user
identification model is jointly trained using data from one
and two centers to ensure data security.

3.2 Vertical Federated Learning

A distributed learning architecture called vertical feder-
ated learning (VFL) enables several users to co-train a
model without exchanging the original data, particularly
in situations when the feature space is large. In VFL, dif-
ferent participants protect data privacy through encryption
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technology to ensure that model training and parame-
ter passing are completed without leaving the domain.
Longitudinal federated learning achieves cross-domain
knowledge fusion by securely aggregating complementary
features from different data sources, especially for collab-
orative scenarios where samples are highly overlapping
but feature dimensions are dispersed. Build a virtual fea-
ture space that is encrypted so that participants may work
together to model features at the feature level without
disclosing the underlying data. Although the feature sets
are complimentary, longitudinal federated learning neces-
sitates that participants share sample identifiers.

In order to solve the challenge of challenging data sharing
and utilization, longitudinal federated learning is em-
ployed in cross-border intelligent analysis of energy emis-
sions. Asynchronous network updates and homomorphic
encryption techniques are used to ensure the security and
effectiveness of multi-party modeling. Vertical federated
learning may be used in privacy-protected data frame-
works in situations where each participant’s training data
has unique characteristics but overlapping sample ids, and
the common sample ids are computed to accomplish data
alignment. To safeguard sample id privacy and prevent
intersection information from being revealed during the
secret sharing allocation, the ALIGN framework employs
homomorphic and exchangeable encryption algorithms
throughout the data alignment procedure. When the final
alignment results were applied to the model training, ex-
periments showed that for every 10% increase in redun-
dant data, the ALIGN frame could reduce the model train-
ing time by approximately 1.3 seconds and ensure a stable
accuracy rate of over 85%. Or use encryption technology
to create an architecture on isolated data that has the same
sample distribution but separate feature distributions. This
would allow for cooperative training of intelligent models
while protecting data privacy.

3.3 Federated Transfer Learning

Federated transfer learning is a hybrid approach that in-
tegrates the principles of transfer learning and federated
learning [9]. It enables multiple clients to collaborative-
ly train a shared global model without exchanging raw
data, thereby improving the model’s generalization and
adaptability through mechanisms of model transfer and
personalization. In federated transfer learning, a federated
aggregation technique based on model parameter averag-
ing is employed to integrate local models from distributed
clients into a unified global model, while ensuring the
preservation of data privacy. Subsequently, this global
model is fine-tuned on each client’s local dataset using
transfer learning techniques to enhance the performance

and detection capabilities of individual local models [10].
By fostering cross-domain expertise, federated transfer
learning tackles the problem of collaborative modeling
in situations where participants’ sample distribution and
feature space differ significantly. bridges. The technique’s
main goal is to identify possible connections between
various data domains and create nonlinear mapping re-
lationships between the source and target domains using
the little information that is supplied. This mapping is
achieved through a common knowledge representation
layer - which serves as a hub for cross-domain feature
transformation, projecting source domain features into the
latent space shared with the target domain while retaining
key information about the target task. Its mathematical
implementation typically relies on an adversarial train-
ing mechanism: the generator network is responsible for
transforming the source domain features into a represen-
tation that the target domain can understand, while the
discriminator network constrains the transformed feature
distribution through domain classification loss, making
it statistically indistinguishable from the target domain
features. Federated transfer learning uses techniques such
as gradient inversion layers to automatically optimize the
dual objectives of domain adaptation and task prediction
during backpropagation, ensuring that the general knowl-
edge accumulated by the model during the pre-training
phase in the source domain can be effectively transferred
to the target domain, while fine-tuning the mapping pa-
rameters through a small number of shared samples,
ultimately achieving seamless fusion of cross-domain fea-
tures and improvement of task performance.

4. Optimization of Lightweight Feder-
ated Learning based on Edge-Cloud
Collaboration

4.1 Dynamic Communication Optimization

Minimizing the overall volume of data transmitted during
the model parameter exchange process or enhancing the
transmission speed of model parameters constitutes the
primary objective of communication optimization in fed-
erated learning. Achieving this can effectively reduce the
time required for both local and global model uploads [11].
By enhancing the communication efficiency of federated
learning through a hierarchical architecture and integrat-
ing it with the real-time perception and dynamic schedul-
ing capabilities of 6G computing power networks, system
resources can be dynamically allocated to effectively
reduce transmission latency and energy consumption. By
putting lightweight models to edge nodes and utilizing the



cloud for global model aggregation, a rational division of
computing workloads is accomplished. The edge side is
responsible for low-latency local training, while the cloud
focuses on complex model updates and multi-node coor-
dination, reducing the computational burden on a single
node. Based on the heterogeneity of device computing
power, participating clients can be grouped to ensure that
low-performance devices prioritize the use of edge re-
sources, while high-performance devices connect to the
cloud, maximizing resource utilization. Model parameters
may be effectively synced between the edge and the cloud
by utilizing the low latency and high bandwidth features
of 6G networks, which improves training efficiency over-
all.

4.2 Multi-modal Data Fusion in Federated
Learning

The quantity of accessible training data has a significant
impact on machine learning performance. The model pro-
duced by machine learning typically performs better the
richer data. Data collected by edge devices often contains
multimodal features such as text, images, timing signals,
etc. Traditional protocols lack synergy in compressing
multimodal data. It is recommended to build a multimodal
compression framework for joint optimization in combi-
nation with feature dimension correlation. The collabora-
tive optimization of multimodal data fusion and federated
learning can enhance model classification performance
through cross-modal alignment and shared representation
[12]. By integrating heterogeneous data sources such as
images, text, and sensors, this method provides richer
feature representations for federated learning. However,
traditional methods face challenges in data alignment, fea-
ture extraction efficiency, and privacy protection.

The heterogeneity of multimodal data manifests as sig-
nificant structural and semantic variations across sources,
complicating analysis, reuse, and interpretation [13].
This challenges traditional feature extraction methods
to adapt to dynamic data distributions. Within federated
learning frameworks, hierarchical feature encoders en-
able cross-modal alignment. Lightweight architectures
combining Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) at edge nodes process
image and text data respectively, with automatic feature
fusion ratios adjusted through dynamic weight alloca-
tion mechanisms [14]. For instance, in medical imaging
diagnosis, attentional mechanisms integrate CT texture
features with electronic medical record (EMR) textual
features, achieving a 12.7% improvement in AUC for pul-
monary nodule detection while reducing feature dimen-
sions by 63%. By introducing domain-adaptation layers
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via transfer learning and leveraging PyTorch’s dynamic
computational graph capabilities, the framework address-
es feature drift caused by parameter differences across
healthcare institutions.

In terms of privacy protection, modal federal learning
achieves multi-modal data fusion while protecting priva-
cy by performing knowledge distillation using minimal
public data or no data on servers, combined with implicit
sharing of local model parameters. The gradient aggrega-
tion process incorporates a dynamic noise injection strat-
egy that adaptively adjusts noise intensity across training
phases to minimize critical parameter perturbations. Inte-
grated with secure multi-party computation technology,
this approach enables authenticated parameter updates in
ciphertext state, effectively defending against man-in-the-
middle attacks initiated by malicious nodes.

4.3 Collaborative Optimization of Edge Com-
puting and Federated Learning for Lightweight
Model Architecture

Edge Computing Demonstrates Advantages Across Band-
width Scenarios [15]. By employing a hyperparameter
search algorithm with channel pruning awareness, the
model size was reduced to 34% of its original size in
breast cancer classification tasks while maintaining key
diagnostic metrics within a 2% reduction. PyTorch Mobile
achieved dynamic pruning that distilled the core deci-
sion-making logic of Transformer models into an LSTM
network occupying merely one-tenth of the original vol-
ume, with prediction errors controlled below 3%.

Furthermore, by employing techniques such as dynamic
hyperparameter optimization, edge-cloud collaborative
training, and load balancing algorithms, adaptive re-
source scheduling and load distribution can be effectively
achieved. The integration of edge computing and federat-
ed learning enables efficient utilization of computational
and communication resources in resource-constrained en-
vironments through adaptive control algorithms, achiev-
ing distributed machine learning [16]. By integrating
the Optuna and Flower frameworks, this solution auto-
matically adjusts learning rates and batch sizes based on
varying computational capabilities across edge devices.
TensorFlow 2.9 leverages dynamic model slicing technol-
ogy to automatically segment and load model components
based on edge device computing capabilities. In medical
imaging diagnosis scenarios, the backbone network of CT
image recognition models is deployed on edge gateways,
while fine-grained classification modules operate on mo-
bile workstations, effectively reducing overall inference
latency. The system initializes node weights based on
real-time resource availability, prioritizing task allocation
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to high-weight nodes through round-robin scheduling. It
monitors queue lengths across nodes and distributes new
requests to those with the fewest connections. The algo-
rithm dynamically adjusts weights or task routing paths in
real-time according to periodic health checks, preventing
local overload. By generating unique hash values that map
requests to specific nodes, it significantly reduces schedul-
ing overhead.

4.4 Edge Cache Assistance and Joint Computa-
tion Scheduling

In mobile edge networks, device offline and network con-
gestion often cause communication disruptions. Deploy
edge caching nodes and build a joint scheduling system of
“computation-caching-communication”. When edge nodes
are training locally, cache the intermediate computing
results to nearby edge servers. When the network is in-
terrupted, the cache node forwards the cached data to the
target node via D2D communication. After the commu-
nication is restored, the receiver combines the cache data
with the new received parameters through the differential
update mechanism. To optimize the caching strategy, a re-
inforcement learning model is introduced to dynamically
adjust the cache content and forwarding path with the aim
of minimizing communication delay and computational
overhead. It is recommended to integrate the local differ-
ential privacy federated learning framework to coordinate
user task scheduling, enhancing user device privacy pro-
tection while reducing the average total delay cost of the
system.

5. Conclusion

In summary, this paper investigated the optimization of
federated learning based on edge-cloud collaboration,
highlighting key solutions to challenges like resource con-
straints and data heterogeneity. In the future, with the fur-
ther evolution of edge computing and federated learning
technologies, more efficient compression algorithms and
intelligent scheduling mechanisms can be explored, while
research on protocol security should be strengthened to
promote the widespread application of federated learning
in more complex scenarios.
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