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Counterfactual Causal Attention
Learning: Enhancing Fine-Grained
Visual Recognition via Indirect Effect
Optimization

Abstract:

Hangyu Peng Fine-grained visual recognition (FGVR) aims to
distinguish subtle differences among visually similar
categories. However, conventional attention mechanisms
Bl Nereeih | Uity af lack quantitative .approac.:hes tq eyaluate' the 'qu.ality qf
Information the legrned attention during .tral.nlr.lg, .whlch limits their
Dalian, China effectiveness. To address this limitation, we propose a
novel Counterfactual Causal Attention Learning (CCAL)
framework for fine-grained image classification and person
re-identification. In our approach, the attention map is
modeled as a confounding variable within a causal graph,
and counterfactual interventions are employed to assess its
impact on model predictions. By optimizing the indirect
effect (IE), CCAL enhances the reliability of attention
and improves overall recognition performance. Extensive
experiments on multiple FGVR benchmarks demonstrate
consistent improvements, including a 1.3% Top-1 accuracy
gain on the CUB-200-2011 dataset.
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1. Introdution anisms help mitigate challenges caused by complex
) ) ) backgrounds, occlusions, and pose variations [17,18],
This work builds upon the experimental methodolo- ;4 have become fundamental components of many

gy proposed in [1]. Attention mechanisms play a vital  gtate-of-the-art recognition models [2,3,4].
role in human visual perception by enabling focus on

relevant regions within complex scenes, which en-
hances recognition efficiency. This principle has been
widely applied in computer vision, particularly for
fine-grained visual recognition, where capturing sub-
tle inter-class differences is crucial. Attention mech-

However, most current approaches rely heavily on
weak supervision, focusing only on the final pre-
diction without explicitly considering the causal
relationship between attention and prediction. For
example, in datasets containing birds or airplanes, at-
tention models sometimes mistakenly focus on irrel-



evant features like the sky or background foliage, which
can mislead the model’s understanding of truly discrim-
inative features [5,6,7]. Additionally, models that attend
to only part of an object’s attributes may suffer from lim-
ited generalization. As shown in [1], traditional attention
learning methods are suboptimal and often fail to produce
sufficiently discriminative attention maps, even for well-
trained models, leading to occasional misclassifications
[11]. This suggests that relying solely on final loss signals
under weak supervision is insufficient to ensure meaning-
ful and robust attention [12].

To address these issues, we propose a novel training
framework based on counterfactual interventions within
a causal inference setting. By treating the attention map
as a confounder, we perform counterfactual analyses to
quantify the effect of attention on the model’s predictions.
Through optimizing the indirect effect, our method en-
courages the model to focus on genuinely discriminative
regions, reducing reliance on spurious cues. We imple-
ment various counterfactual intervention strategies and
demonstrate consistent improvements on several fine-
grained recognition benchmarks [1].

In summary, our proposed Counterfactual Causal Atten-
tion Learning (CCAL) approach significantly enhances
classification accuracy in fine-grained visual tasks. By
integrating multi-level counterfactual information, our
model more effectively captures key visual features. On
the CUB200 bird classification dataset, CCAL achieves
89.6% accuracy, surpassing the state-of-the-art API-NET
[19] by 0.5%, and improving over our baseline by 1.3%,
thereby validating the effectiveness of the counterfactual
learning paradigm.

II. Relate work

A. Attention Mechanisms

In recent years, attention mechanisms have emerged as
a crucial technique for enhancing representation in fine-
grained visual recognition tasks, leading to significant
performance improvements. Unlike traditional global fea-
ture learning methods, attention modules can adaptively
identify highly discriminative local regions, effectively
addressing the challenges posed by subtle inter-class
variations. Sermanet et al. [8] pioneered the integration
of visual attention into fine-grained image classification
by introducing a recursive framework that guides models
to focus on semantically salient regions, laying the foun-
dation for spatially selective modelling. Building on this,
Liu et al. employed reinforcement learning to dynamically
enhance the relevance and responsiveness of attention
extraction. Subsequently, approaches such as MA-CNN
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[9], MAMC [10], and WS-DAN [13] explored bottom-up
attention designs, combining local cues with global con-
text to automatically discover discriminative regions and
achieve multi-scale feature collaboration, achieving state-
of-the-art results on several benchmark datasets. More-
over, attention-based models have been widely adopted in
cross-view recognition tasks—including person re-iden-
tification, vehicle retrieval, and video understanding—
where they effectively mitigate misalignment and back-
ground noise, thereby improving the semantic coherence
and discriminative power of visual features.

Despite their empirical successes, conventional attention
mechanisms remain fundamentally data-driven and are
susceptible to exploiting spurious correlations between
input and attention representations, which can lead to in-
correct attributions and diminished generalisation capabil-
ities.

B. Causal Inference

Recently, causal inference has been proposed as a princi-
pled framework to tackle these challenges by distinguish-
ing structural dependencies from non-causal statistical
associations [14]. By constructing Structural Causal
Models (SCM) and leveraging key tools such as interven-
tions (do-operations) and counterfactual reasoning, causal
analysis has demonstrated significant value across various
visual tasks, including image classification, visual ques-
tion answering, domain generalisation, and multimodal
reasoning [15,16].

Notably, the Causal Attention Learning (CAL) framework
[1] represents a major advance by modelling attention
maps as latent confounders in a causal graph and quanti-
fying their effect on predictions through structural inter-
ventions, thereby fostering more robust and interpretable
attention learning. However, CAL is limited to observa-
tional-level causal analysis and lacks the capability to
explicitly model or intervene upon the indirect pathways
through which inputs influence outputs via the attention
mechanism.

To overcome this limitation, we propose the  Counter-
factual Causal Attention Learning (CCAL) framework,
which incorporates counterfactual interventions along the
attention pathway. By substituting the learned attention
with counterfactual samples and estimating the resultant
changes in predictions, CCAL explicitly quantifies the in-
direct effect (IE) of inputs mediated by attention and mini-
mizes this effect during training. This enables suppression
of spurious pathways while amplifying genuine causal
contributions. Compared to existing regularisation-based
attention strategies such as entropy constraints, dropout,
or normalisation, CCAL offers a theoretically principled
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and causally complete modelling paradigm. Experimental
results on the CUB-200-2011 dataset demonstrate that our
method not only improves classification accuracy but also
produces attention distributions with greater semantic co-
herence and discriminative focus [1].

II1. Approach

Our model takes as input a color image X with dimen-
sions HxW xC, where H represents the image height,
W the image width, and C the number of channels. We
employ an RGB colour model with three channels. The
model’s output is the predicted image category Y, where
Y?0, and O denotes the set of all fine-grained catego-
ries in the dataset. Formally, our model can be represented
as y= f(X), where f(-) denotes the proposed function.

A. Feature Extraction

This method extracts relevant features from the image
using a convolutional neural network (CNN). Specifically,
we design a three-layer CNN for feature extraction, which
can be expressed as follows:

A =CNN(X) (1)
Here, A4, denotes the feature map obtained through the

convolutional neural network, where 4, € R”"*“, with

HHH representing the height of the image, W the width,
and C the number of channels in the feature map.

()

“‘

Simultaneously, to obtain the corresponding features of
the image, the feature map undergoes a pooling operation,
which can be expressed by the following formula:

H W
h=g(X*4) =S Y XA (2)

h=1 w=1
i={1,2,3,,,, C } represents different channels, 4, denotes
the feature map of the i-th channel, and /i represents the
features of the input image X in the i-th channel. Ultimate-
ly, the extracted feature F, for the input image X can be
represented as:

F. = Norm(|| b, h,,....h.), 3)

’ ’ denotes the concatenation in the feature dimension,

and Norm represents the normalization of the features.

B. Counterfactual Intervention

First, we construct the prediction process as a causal
graph G=(V,E), where V represents the nodes and E
represents the edges of the causal graph. In this model,
there are three nodes: the input image X, the extracted
feature map 4, and the final output Y. The prediction
process of the model can be represented as shown in the
figure below. The direction of the arrows indicates the
order of inference in the model, and the red crosses repre-
sent where we intervene to break the path from X to 4,

simultaneously constructing a new feature map A4 through

counterfactual intervention.

(b)

Figure 1: Causal learning schematic. (a) represents the conventional model structure. (b)
represents the model structure with counterfactual intervention applied

As shown in Figure 1(a), for the prediction result Y, we
consider both the input X and the extracted feature map
A as factors influencing the outcome, where the feature
map A is also affected by the input X. To explore the
causal relationship between the input X and output Y, we
treat 4 as a confounding variable.

The outcome without intervention is denoted as

Y(A=A4,X = X), while the feature map after counterfac-

tual intervention is denoted as do(A4 = A) . The counterfac-

tual prediction result is expressed as Y (do(A4 = ;1),X =X)

. This formulation enables us to investigate the causal
effect between X and Y.

Inspired by causal learning, we uncover the causal rela-
tionship by minimizing the indirect effect (IE) between X
and Y, which can be formulated as:

Y, :E{Y(A — A, X :X)—[do(A S Aj,X:Xﬂ )

A

where [E_  denotes the expectation over the entire train-
Ay

ing set. In practice, this expectation is minimized by opti-
mizing the model’s loss across the full dataset.



C. Loss Function
Based on the above analysis, the loss function of our mod-
el consists of two parts. The first part is the classification

loss after counterfactual intervention, denoted as £, and

the second part is the loss from other subtasks, denoted
as L

other *

The overall loss function of the model can be

expressed as:
£7"0tal = a‘CCE + ﬂ‘cother H (5)

where «a and [ are hyperparameters used to balance
these two loss components.

IV. Experiments

A. Implementation details

We adopt fine-grained image recognition as the classifica-
tion task and conduct experiments on the CUB200-2011
dataset. In equation (2), we set H =448, W =448, and
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C=16. Since there are no other subtasks, the hyperpa-
rameter fis set to 0. For the classification task, we use

the cross-entropy loss function to optimize the model.
Experiments are performed on an NVIDIA® GeForce
RTX™ 4090 GPU. The learning rate is set to 0.001, with
160 training epochs, and the hidden dimension is set to
65,536.

B. Result

We evaluated the effectiveness of the proposed Counter-
factual Causal Attention Learning (CCAL) method on the
fine-grained bird visual recognition task. Using traditional
spatial attention as the baseline, we compared our method
against this baseline as well as the CAL approach. The ex-
perimental setup, implementation details, and results for
this task are described as follows.

table 1: Comparison of top-1 classification accuracy (%)
with state-of-the-art fine-grained image classification
methods on the CUB200-2011 dataset

Method CUB
RA-CNN[20] 86.1
MAMC[9] 86.7
DCL[21] 87.6
API-NET[19] 90.1
Baseline 89.3
Baseline+CAL 90.6
Baseline+CCAL 89.6

table 2: Quantitative analysis of attention. We compare the
classification accuracy (%) of our method with three oth-
er attention regularization strategies, including attention
dropout, entropy regularization, and attention normaliza-

tion, and evaluate the quality of the learned attention maps
via mloU (%) using the ground-truth bounding boxes on
the CUB dataset.

Method CUB mloU
Baseline 89.3 54.2
Baseline+CAL 90.6 67.4
BaselinetCCAL 89.6 68.1

C. Analysis

We analyzed the impact and sensitivity of the main param-
eters mentioned above and obtained the following results.
Parameter analysis experiments were conducted on the
fine-grained visual recognition task using the CUB-200-
2011 dataset. We compared the performance of the CAL
method with several state-of-the-art fine-grained image
classification methods. The experimental results show that
CAL achieved a Top-1 classification accuracy of 90.6%
on the CUB dataset, outperforming existing methods such

as RA-CNN (86.1%), MAMC (86.7%), DCL (87.6%),
and API-NET (90.1%). The baseline model achieved an
accuracy of 89.3%, which was further improved to 90.6%
by incorporating CAL, indicating that CAL significantly
enhances the model’s capability in fine-grained image
classification tasks. In comparison, although the CCAL
method also improved performance, its accuracy reached
only 89.6%, slightly lower than CAL, suggesting that
CAL is more effective in boosting classification accuracy.
D. Visualizatio
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In this section, we conduct an in-depth analysis of our
trained CCAL model’s decision-making process on the
CUB200-2011 dataset for the “Yellow-headed Blackbird”
class using model attention heatmaps, such as Grad-CAM.
We specifically focus on whether the model effectively
captures the head features of the Yellow-headed Black-
bird.

Figure 2 The heatmap results shown above
indicate that the model has effectively
captured the head features of the Yellow-
headed Blackbird

E. Conclusion

This study aims to address the limitations of conventional
attention mechanisms in fine-grained visual recognition
(FGVR), specifically the insufficient evaluation of atten-
tion quality and weak supervisory signals. Inspired by pre-
vious work, we propose and implement a counterfactual
causal attention learning method designed to enhance the
model’s focus on discriminative regions while mitigating
reliance on spurious features.

By modeling the attention map (A) as a confounding vari-
able in the causal path from input to prediction (X — Y)
and employing counterfactual interventions, our frame-
work effectively evaluates attention quality and generates
robust supervisory signals through optimization of the
indirect effect (IE). We explore various intervention strat-
egies and attention methods to improve this approach.
Experimental results on multiple FGVR tasks, including
fine-grained bird classification (CUB-200-2011), demon-
strate the effectiveness of our method. Compared to
traditional baselines, our method significantly improves

recognition accuracy. Although its classification accuracy
is slightly lower than some state-of-the-art methods (e.g.,
CAL), our Counterfactual Causal Attention Learning
(CCAL) achieves superior mloU performance (68.1% vs.
67.4%), indicating its effectiveness in generating more
semantically coherent and discriminative attention distri-
butions critical for model interpretability.

Essentially, this work successfully integrates causal infer-
ence into fine-grained visual attention learning, providing
a robust solution to enhance the interpretability and reli-
ability of model focus regions. Future work may extend
this approach to other challenging visual tasks.
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