rr ISSN 2959-6157

Research on Homomorphic Encryption

Methods for Financial Data Based on

Parameter Optimization and Hybrid

Architecture

Jingming Hu

School of Economics and
Management, Harbin Institute of
Technology (Weihai), Shandong,
China, 264299

Email: 2022210879@stu.hit.edu.cn

Abstract:

This study addresses the privacy protection requirements
in financial data analysis by proposing a homomorphic
encryption method that integrates CKKS parameter
optimization with a hybrid FHE-PHE architecture. Through
orthogonal experimental design, the optimal parameter
combinations are selected, resulting in significantly
improved encryption time compared to conventional
encryption methods and greater stability in encryption time
compared to FHE.

Keywords: homomorphic encryption, parameter optimi-

zation, hybrid architecture, financial data

1 Introduction

1.1 Research Background

As a data-intensive industry, the financial sector has
entered an era of stringent regulatory oversight re-
garding data compliance. Article 32 of the EU Gen-
eral Data Protection Regulation (GDPR) explicitly
requires the implementation of “appropriate technical
and organizational measures to ensure the security
of personal data,” while the US California Consumer
Privacy Act (CCPA) grants consumers the “right to
access” and “right to delete” their data, directly driv-
ing the transition of privacy computing technology
from theory to practice. Homomorphic encryption
(HE), as one of the core technologies of privacy
computing, addresses the pain point of “usable
but invisible” financial data through its “encrypted
computability” feature—for example, in cross-bank
credit approval, joint risk control modeling can be

performed on encrypted corporate revenue data with-
out decryption. While HE supports encrypted compu-
tation, it faces two major bottlenecks:

Performance bottleneck: Mainstream CKKS schemes
(suitable for floating-point calculations) require 3—5
seconds per multiplication operation, and the cipher-
text volume is 10—100 times that of plaintext, making
it difficult to support daily financial data processing
demands of millions of transactions.

Insufficient scenario adaptability: A single archi-
tecture cannot accommodate diverse requirements.
FHE supports arbitrary addition, subtraction, multi-
plication, and division operations but has high com-
putational overhead, making it suitable for complex
predictive tasks (e.g., modeling profit growth rates
based on historical data); PHE only supports single
addition or multiplication operations, though it is
fast, it cannot meet scenarios involving multi-step
multiplication.

Dean&Francis

ISSN 2959-6157

1.2 Research Contributions

1. Parameter Optimization Model: Dynamic Parameter
Adaptation Strategy Based on Orthogonal Experimenta-
tion Method

2. Hybrid Architecture Design: FHE and PHE Collabora-
tive Division of Labor Protocol

2 Related Work

2.1 Homomorphic Encryption Optimization
Research

Table 1 Research findings of relevant teams and their limitations

Research Team | Core Contributions

Limitations

Proposed dynamic self-boosting technology, which increases the speed of multiplication | High hardware re-

cy to 92%.

MIT (2022
() operations by 5 times by updating the ciphertext noise budget on demand. quirements
Developed the Morse Privacy Computing Platform, which supports cross-institutional joint .
. Only applicable to
Ant Group risk control based on homomorphic encryption, improving credit default prediction accura-

large institutions

versity the CKKS scheme from 100 times to 30 times.

Tsinghua Uni- | Proposed a noise progressive control algorithm, reducing the ciphertext expansion rate of | Unmatched financial

dynamic data

2.2 Exploring Hybrid Architectures

Hybrid architectures address the shortcomings of sin-
gle-solution approaches by integrating multiple encryption
technologies, but they still face practical challenges:
IBM’s FHE+TEE (Trusted Execution Environment)
framework executes sensitive computations within hard-
ware-isolated zones (e.g., Intel SGX), improving efficien-
cy. However, TEE relies on hardware vendors’ trusted
roots, posing a “single point of failure” risk.

Tencent Cloud’s “federated learning + homomorphic
encryption” solution keeps the error rate below 1.5% in
credit card fraud detection, but each round of model train-
ing requires the transmission of over 10 GB of intermedi-
ate ciphertext, resulting in communication overhead three
times that of pure homomorphic encryption, making it
unsuitable for low-bandwidth scenarios (e.g., county-level
bank branches).

3 Methodology

3.1 Overall Framework

The overall framework of this method includes two core

components: the “parameter optimization module” and the
“hybrid architecture engine.” The process is as follows:
Data input layer: Receives structured financial data (such
as Excel spreadsheets or database fields), automatically
filters non-numeric data (such as notes), and performs
standardization processing (such as removing NaN values
and normalizing to the [0,1] range).

Parameter Optimization Module: Based on data character-
istics (dimensions, calculation types), matches the optimal
parameter combination (polynomial ring dimensions,
modulus chain, scaling factor) from orthogonal experi-
ment results and outputs a parameter configuration file.
Hybrid Architecture Engine:

Task Identification:Determines task type by parsing busi-
ness tags (e.g., “aggregation,” “prediction”);

Module Scheduling:Aggregate tasks are assigned to the
PHE module (supporting additive homomorphic encryp-
tion),and prediction tasks are assigned to the FHE module
(supporting addition, subtraction, multiplication,and divi-
sion);

Cryptographic Computation:The PHE module performs
operations such as summation and averaging on encrypted
data, while the FHE module performs complex operations
such as polynomial fitting and matrix multiplication.

3.2 Orthogonal Experiment Design

Dean&Francis

JINGMING HU

Table 2 L9(3*) Orthogonal Table Configuration:

iﬁf br;nental El(;lnys?z:lal Ring Di- Modular Chain | Scaling Factor | Core Impact

] 4096 [50.30,50] 20 Suitable for low-dimensional addition tasks, with fast
encryption speed but moderate accuracy.

5 8192 [60.40.40.60] |2° Suitable for high-dimensional multiplication tasks, with
high accuracy but a 30% increase in encryption time.

Experimental results show that when the polynomial ring
dimension is 4096, the modulus chain is [50,30,50], and
the scaling factor is 230, the addition operation efficiency
is optimal (700k+ data points/second at unit speed); when
the dimension is increased to 8192 and the modulus chain

is increased to 4 segments, the multiplication operation
accuracy improves by 25% (error <1%).

3.3 FHE-PHE Hybrid Architecture

3.3.1 Task Division Protocol

Table 3 Division of tasks

Task type Processing Module | Technical Principles

Advantage Typical Scenarios

nancial statements | rithm) property: E(a) + E(b) =
bootstrapping operation

Summarizing fi- | PHE (Paillier algo- | Utilizing the additive homomorphic | Encryption speed is 1000 | Monthly revenue

E(a + b), no | times faster than FHE+, | summary, departmen-
is required. |with latency < 10ms tal expense statistics

FHE (Optimized in confidential mode:

Profit Forecasting CKKS)

parameter optimization.

Supports polynomial multiplication Profit growth rate

= E(a x b), reducing the number of
Training bootstrapping operations through

Can perform complex
E(a) x E(b) p- . . P forecasts based on
modeling involving 10+
o . five years of data,
multiplications with less .
. dynamic tax burden
than 2% loss in accuracy. .
calculations

4 Experimental Analysis

4.1 Experimental Environment

To simulate the actual deployment scenario of financial
institutions, the experimental environment is configured
as follows:

1. Hardware: NVIDIA GeForce RTX 4060 graphics card,
32GB DDR4 memory (to support high-concurrency data
processing), AMD Ryzen 7 7435H processor;

2. Software: Python 3.11 (programming language), Ten-
SEAL library (homomorphic encryption library);

3. Dataset: Simulated financial data generated via code
(containing 2,000 records).

4.2 Algorithm Optimization Comparison:

Comparison of conventional CKKS, pure FHE, and the
hybrid encryption algorithm proposed in this study on a
dataset of 2,000 records:

4.2.1 Conventional CKKS Scheme:

Table 4 Encryption results of the conventional CKKS scheme

Time-C i
Modular Chain Polynomial Ring Dimension | Unit Encryption Speed fme-f-onsuming
[50,30,50] 4096 298.43 data points/second 6.7s
[60,40,40,60] 8192 303.29 points/second 6.6s

Dean&Francis

ISSN 2959-6157

4.2.2 Pure FHE encryption:

Although pure FHE schemes support full computation,
their encryption time stability is poor:

Table 5 Pure FHE encryption results

Modular Chain Polynomial Ring Dimension Time-Consuming
[50,30,50] 4096 Approximately 0.003 seconds
[60,40,40,60] 8192 0.005s~0.017s

4.2.3 Hybrid encryption algorithm:

Key code:

1. CKKS encryption parameter configuration
context = ts.context(

ts.SCHEME TYPE.CKKS,

4096, #Polynomial modulus

[50,30,50] #Coefficient modulus size

)

context.generate _galois_keys()

context.global scale =2%**30 #Global scaling factor
2. Data preprocessing and encryption

data = data.select dtypes(include=[np.number]).values.
flatten()

data_np = np.array(data, dtype=np.float64, ndmin=1).rav-
el()

data_np = data_np[~np.isnan(data np) & ~np.isinf(data
np)]

cipher = ts.ckks vector(context, data np) #Create an en-
cryption vector

trained_model = cipher * 1.5 #Simulated encryption op-
erations

3. Encrypted data and context preservation

with open(“encryption_context.bin”, “wb”) as f:
f.write(context.serialize(save secret key=True))

with open(“encrypted_financial data.bin”, “wb”) as f:
f.write(trained_model.serialize())

Table 6 Mixed encryption results

Pol ial Ring Dimen-
Modular Chain S;:)Znomla 1ng imen Unit Encryption Speed Time-Consuming
[50,30,50] 4096 700451.80 points/second 0.0028s
[60,40,40,60] 8192 337012.39 points/second 0.0059s

Key code analysis:

1. In the CKKS parameter configuration, the setting
of global scale=2**30 balances the precision of float-
ing-point calculations and the rate of noise growth.

2. The data preprocessing step (~np.isnan(data_np)&~np.
isinf(data_np)) ensures that outliers do not cause encryp-

tion failure.

5 Application Practice

5.1 Scenario Adaptation Plan

Table 7 Application Scenarios

Task Type

Recommended Configuration

Monthly report aggregation

Dimension 4096, scaling factor 220

Tax burden forecast

Dimension 8192, modulus chain [50-30-50]

Key code:

def process_financial data(data, task type):
if task type == “aggregation”:

PHE path: additive aggregation
enc_data=[paillier.encrypt(x) for x in data]
result=sum(enc_data)

return paillier.decrypt(result)

elif task type =="prediction”:

5.2 Actual Application Scenarios:

1. Annual Profit Forecast

A manufacturing company needs to predict its 2024 prof-
its based on the profit data from the past five years ([38
million, 42 million, 45 million, 48 million, 51 million]
yuan). The FHE module with a hybrid architecture is used
for processing:

Data Encryption: Historical data is encrypted using an

8192-dimensional polynomial ring, with the ciphertext
volume approximately 15 times that of the plaintext;
Secure Computation: The operation “mean x growth rate”
is performed (growth rate = 10%), i.e., (3800 + 4200 +
4500 + 4800 + 5100) / 5 x 1.1;

Result decryption: Output the predicted value of 53.5 mil-
lion yuan, with an error range of £2% (due to precision
loss caused by encrypted computation), meeting the com-
pany’s budget planning requirements.

Code implementation:

annual profit =[3800, 4200, 4500, 4800, 5100] #simulat-
ed data

def process_financial data(data, operation):

if operation == “prediction”: # Simple forecasting model:
10% growth based on historical data averages

return sum(data) / len(data) * 1.1

return None

Train predictive models

model=process_financial data(annual profit,”prediction’)
print(f“2024 predicted profit: {model} million yuan”)
#Output: 5350+2%

2.Quarterly Profit Analysis

A certain bank needs to summarize the profits of its
branches for four quarters ([430, 390, 410, 450] million
yuan) using the PHE module:

Data encryption: 4096-dimensional parameter encryption
is used, with each data encryption taking less than 1 ms.
Ciphertext aggregation: Performs ciphertext summation
(430 + 390 + 410 + 450) without requiring bootstrap oper-
ations;

Result decryption: Outputs the total sum of 16.8 million
yuan, with a response time of 0.003 seconds, supporting
real-time report generation.

Code implementation:

def process_financial data(data, operation):

if operation == “aggregation”:

return sum(data)

Dean&Francis

JINGMING HU

return None

quarter_profit = [430, 390, 410, 450] #Unit: 10,000 yuan
Hybrid architecture processing

result = process_financial data(quarter profit, “aggrega-
tion”)

print(f“Total quarterly profit: {result} million yuan”)
#Output: 16.8 million yuan

6 Conclusions and Outlook

6.1 Main Achievements

1. Parameter optimization reduces CKKS computation
time.

2. Hybrid architecture reduces aggregation task latency to
less than 2 seconds.

6.2 Future Directions

1. Integration of quantum-secure homomorphic encryp-
tion algorithms.

2. Blockchain-enabled cross-institutional audit protocols.
3. Support for real-time streaming financial data analysis.

References

[1]Cheon J H, et al. Homomorphic Encryption for Arithmetic of
Approximate Numbers. ASIACRYPT 2017

[2]Gentry C. Fully Homomorphic Encryption Using Ideal
Lattices. STOC 2009

[3]China Communications Standards Association. Privacy
Computing Technical Specifications. 2023

[4]Microsoft SEAL Documentation. 2023

[5]Ant Technology Research Institute. Practical Performance
Optimization of Homomorphic AES. 2023

[6]Tsinghua University Privacy Computing Laboratory.
Adaptation Guidelines for Homomorphic Encryption in
Financial Data Scenarios. 2024

