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Personalized Federated Learning for Heart
Failure Mortality Prediction under Non-
IID Clinical Data

Abstract:

Zhenxuan Wang This research explores how federated learning (FL) can be

applied to predict heart failure mortality, emphasizing the

protection of patient data privacy while maintaining model

Mieits Witsscae Climmrsrtam. ke, accuracy in realistic clinical environments. Using the Heart

United States Failure Clinical Records dataset, I simulate 30 medical

2w 71 @illinois.edu institutions and compare three FL algorithms—FedAvg,
FedProx, and pFedMe—under conditions where data is
not independently and identically distributed (non-IID).
FedAvg serves as a baseline for centralized aggregation,
FedProx introduces a proximal term to address client drift,
and pFedMe employs Moreau envelopes for personalized
model updates. The results demonstrate that both FedProx
and pFedMe outperform FedAvg, achieving a final test
accuracy of 70% versus 66.67%, with pFedMe further
exhibiting the most stable training dynamics and minimal
loss drift. These findings underscore the critical role of
regularization and personalization in federated healthcare
systems, particularly in heterogeneous environments
where data distributions vary across clients. The work
provides practical guidance for FL deployment in real-
world medical settings, highlighting a trade-off between
accuracy, model stability, and patient-specific adaptation—
all while maintaining strict data privacy compliance.
This contributes to the broader effort of enabling secure,
collaborative Al in healthcare.
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1. Introduction data confidentiality while still delivering accurate and
actionable predictions. Traditional centralized ma-
chine learning approaches require collecting sensitive
health data—including physiological signals, body
metrics, and behavioral patterns—on central servers,

In recent years, the increasing concern over the priva-
cy of personal medical records has driven the devel-
opment of machine learning techniques that respect



posing serious privacy, security, and regulatory compli-
ance risks. Such risks are particularly critical in healthcare
settings, where patient data is governed by strict privacy
laws and ethical standards, including strict regulations like
HIPAA and GDPR.

Federated learning gained attention as a potential solution
to privacy-related issues. By supporting collaborative
training across distributed clients while not sharing raw
data, FL ensures that personal information such as weight,
height, age, and biometric signals remains securely stored
on local devices or within institutional boundaries. This
approach aligns well with privacy-preserving principles
and has the potential to unlock the value of distribut-
ed medical data while minimizing exposure to privacy
breaches.

However, deploying FL in healthcare contexts presents
unique challenges beyond privacy. Medical data is often
non-independent and identically distributed (non-IID)
across clients, reflecting differences in demographics,
behaviors, sensors, or institutional practices. Such het-
erogeneity can degrade the performance and stability of
federated models. While the standard Federated Averaging
(FedAvg) algorithm provides a baseline for distributed
learning, it is known to perform poorly under highly non-
IID conditions. To address this, several algorithmic vari-
ants have been proposed, including Federated Proximal
(FedProx), which introduces a proximal term to mitigate
client drift, and Personalized Federated Learning via
Moreau Envelopes (pFedMe), which tailors models to
each client while maintaining collaborative benefits.

This research designs and evaluates a privacy-preserving
federated learning framework for predicting mortality
from Heart Failure Clinical Records, with a comprehen-
sive comparison of three aggregation algorithms: FedAvg,
FedProx, and pFedMe.

The Heart Failure Clinical Records is exceptionally
well-suited for federated learning (FL) research due to
its clinically significant context and inherent heterogene-
ity. Heart failure affects over 64 million people globally
and carries a 5-year mortality rate of 45-50%, making
predictive modeling a high-impact application. The data-
set captures 12 clinically relevant features—including
demographics (age, sex), comorbidities (diabetes, hyper-
tension), and critical biomarkers (ejection fraction, serum
creatinine)—that naturally vary across healthcare institu-
tions. These variations mirror real-world data distribution
challenges in medicine, where patient demographics,
diagnostic protocols, and comorbidity profiles differ sub-
stantially between hospitals (e.g., serum creatinine levels
span 0.5-9.4 mg/dL across patients). This level of hetero-
geneity enables thorough evaluation of how well FL algo-
rithms manage non-IID data imbalances, which remains
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a fundamental obstacle in medical collaborations across
institutions.

The dataset’s structure offers practical advantages for
FL experimentation. With 299 patient records, it enables
simulation of 10-50 realistic client nodes without exces-
sive fragmentation—preserving statistical power while
accommodating resource constraints. Its moderate dimen-
sionality avoids computational bottlenecks yet retains
clinical complexity, as demonstrated by centralized mod-
els achieving ~0.85 AUC. Crucially, it supports multiple
non-IID partitioning strategies: clustering by comorbidity
profiles (e.g., diabetes/hypertension co-occurrence), age
cohorts (40-55 vs. >75 years), or biomarker ranges. This
flexibility allows controlled experiments on personaliza-
tion effectiveness—essential for tailoring predictions to
subgroups like elderly patients with renal impairment.
Furthermore, the mortality prediction task aligns with
FL’s privacy-preserving paradigm, as sensitive data never
leaves originating “hospitals” during training.

2. Related work

Federated learning (FL) offers an effective approach for
developing ML models across distributed data sources
while safeguarding data privacy. McMahan et al. proposed
the FedAvg algorithm to perform distributed optimization
with low communication costs [1]. However, FedAvg suf-
fers from performance degradation in the presence of non-
IID data, a common characteristic of real-world medical
settings [2].

To address this, FedProx was proposed by Li et al. as a
modification of FedAvg, introducing a proximal term to
the client objective to mitigate client drift and stabilize
convergence [3]. Building further on the need for robust-
ness in heterogeneous settings, Dinh et al. proposed pFed-
Me, which frames FL as a bi-level optimization problem,
enabling clients to learn personalized models regularized
toward a shared global model [4]. This personalization is
particularly crucial in healthcare, where patient popula-
tions vary widely between institutions.

Several studies have demonstrated the effectiveness of
FL in medical applications. Sheller et al. applied FL to
brain tumor segmentation, showing comparable results
to centralized methods while maintaining patient privacy
[5]. Similarly, Li et al. used FL for COVID-19 diagnosis
across hospitals using chest CT scans [6]. Moreover, Xu et
al. applied FL to wearable sensor data for cardiovascular
disease prediction, demonstrating the utility of decentral-
ized learning for longitudinal health monitoring [7].
Despite these successes, many early FL applications in
healthcare focused on imaging or relatively homogeneous
data sources. Recent work has emphasized the challeng-



Dean&Francis

ISSN 2959-6157

es posed by structured electronic health records (EHRs),
wearable devices, and behavioral signals, which often
introduce higher degrees of heterogeneity [8]. Efforts such
as FedHealth and federated transformer-based models
reflect ongoing attempts to adapt FL architectures to the
unique demands of medical time series, multi-modal data,
and client-level personalization [9, 10].

The issue of fairness and bias in FL has also gained atten-
tion. Mohri et al. introduced Agnostic Federated Learning
(AFL), which aims to optimize client performance under
worst-case scenarios, ensuring that underrepresented pop-
ulations are not overlooked [11].

3. Method

I implement and compare three federated learning algo-
rithms to predict heart failure mortality while preserving
data privacy. This framework simulates 30 distributed
medical institutions (clients) with heterogeneous data dis-
tributions, maintaining raw patient data locally and shar-
ing only model updates during collaborative training. This
approach addresses critical healthcare challenges: data
privacy regulations (HIPAA/GDPR), institutional data
silos, and natural non-IID data distributions across health-
care providers.

As the foundational FL algorithm, FedAvg establishes
performance benchmarks through simple weight aver-
aging. Its strength lies in computational efficiency and
straightforward implementation, requiring minimal com-
munication overhead. Each client trains locally for 10
epochs (batch size=32) using Adam optimizer (Ir=0.01),
with updates aggregated via sample-weighted averaging.
This approach serves as the control for evaluating more
advanced techniques.

Addressing client drift in heterogeneous data environ-
ments, FedProx introduces a proximal term (u=0.01) to
the loss function. This modification anchors local mod-
els to the global state, significantly reducing divergence
caused by non-IID data. The p parameter controls regular-
ization strength, balancing local optimization and global
consistency. Empirical studies demonstrate FedProx’s ro-

bustness on medical data where feature distributions vary
across institutions (e.g., regional differences in lab test
protocols).

Personalized Federated via Moreau Envelopes (pFedMe)
is Designed for personalization in healthcare applications.
It has inner loop and outer loop. Inner loop sets K=5
iterations to optimize personalized models using SGD
(Ir=0.01) with Moreau regularization (A=15.0). For outer
loop, Client model updates via implicit gradient step. This
structure decouples personalized adaptation from global
collaboration, allowing institutions to maintain models
specialized to their patient populations while contributing
to collective knowledge. The A parameter governs cli-
ent-specific vs. global knowledge integration—critical for
medical applications where populations have demographic
or comorbidity variations.

Together, these algorithms represent a spectrum of feder-
ated learning philosophies: FedAvg (centralized consen-
sus), FedProx (constrained collaboration), and pFedMe
(personalized federation). This comparative framework
provides critical insights for real-world medical FL
deployment where data heterogeneity, personalization
needs, and privacy constraints dynamically interact across
healthcare networks.

4. Result

The comparative analysis of three federated learning algo-
rithms reveals significant differences in performance and
stability. FedAvg achieved a final accuracy of 66.67%, as
shown in Fig. 1, showing considerable volatility through-
out training with fluctuations ranging from 63.33% to 75%
accuracy. This instability correlates with substantial loss
drift values (averaging -1.24), indicating frequent client
divergence where local models overfitted to their respec-
tive data partitions. The extreme negative drift observed
in later rounds (reaching -3.46 in Round 64) demonstrates
FedAvg’s susceptibility to destructive updates in non-1ID
environments, ultimately limiting its reliability for medi-
cal applications.
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Fig. 1 Accuracy & Drift result diagram

From figure 1, FedProx and pFedMe both achieved supe-
rior final accuracy of 70%, representing a 3.33% improve-
ment over FedAvg. FedProx demonstrated stronger initial
convergence, reaching peak accuracy (75%) by Round 5
and maintaining more stable performance in later stages
compared to FedAvg. Its loss drift (averaging -0.53) was
significantly lower than FedAvg’s, confirming that the
proximal term effectively constrained client divergence.
However, persistent moderate drift indicates some insta-
bility remained. pFedMe exhibited remarkable consisten-
cy, maintaining near-constant 70% accuracy after Round
45 with minimal fluctuations. Its near-zero loss drift (av-
eraging -0.021) represents the most stable operation, val-
idating the algorithm’s design for personalized federated
learning through Moreau envelopes.

The loss drift metric provides crucial insight into algo-
rithm stability. Defined as the difference between final
and initial local loss during client updates, it measures
how much local models diverge during training. Moderate
negative values (-0.5 to -0.1) suggest healthy adaptation,
while stronger negatives indicate overfitting. FedAvg’s
large negative drifts reveal destructive divergence, while
pFedMe’s near-zero drift demonstrates near-perfect equi-

librium between personalization and global consistency.
This stability makes pFedMe particularly suitable for
medical applications where reliable incremental improve-
ments are valuable, despite its slightly slower initial con-
vergence compared to FedProx.

For future improvements, addressing class imbalance
through techniques like SMOTE oversampling could
boost all algorithms’ performance. Feature engineering
of cardiac-specific markers might better capture clinical
relationships. For pFedMe, tuning the regularization pa-
rameter (A=15) to 8-12 could potentially increase accuracy
while maintaining stability. Architectural enhancements
like batch normalization and increased model capacity
could help capture more complex patterns. Finally, in-
creasing client participation to 50% and implementing
learning rate warmup might accelerate convergence while
maintaining the observed stability advantages.

5. Conclusion

This research shows the potential of federated learning for
clinical prediction tasks while highlighting critical consid-
erations for real-world implementation. The comparative
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analysis of FedAvg, FedProx, and pFedMe on heart fail-
ure mortality prediction reveals that algorithm selection
fundamentally impacts both performance and stability in
medical applications. The key findings establish that:

- Algorithm efficacy varies substantially, with FedProx
and pFedMe achieving clinically meaningful improve-
ments (70% accuracy) over baseline FedAvg (66.67%).
This 3.33% absolute accuracy gain represents a 5% rel-
ative improvement—potentially impactful in mortality
prediction contexts where early intervention is critical.

- Stability is paramount in medical FL, as evidenced by
loss drift analysis. pFedMe’s near-zero drift (-0.021)
demonstrates unprecedented client consistency, addressing
a fundamental challenge in federated healthcare systems
where data heterogeneity is unavoidable. This stability
makes pFedMe particularly suitable for longitudinal de-
ployments where model reliability outweighs marginal
accuracy gains.

- Non-IID robustness separates algorithm performance.
FedAvg’s volatile trajectory and extreme negative drifts
(-3.46) expose its limitations in realistic clinical settings
with uneven data distributions. By contrast, FedProx and
pFedMe maintained >68% accuracy after Round 20, prov-
ing better equipped for real-world heterogeneity.

- Personalization and regularization balance is critical.
pFedMe’s design—prioritizing local adaptation while
constraining global divergence—achieved optimal stabil-
ity without sacrificing accuracy. This suggests personal-
ized federated frameworks may be essential for clinical
applications requiring both patient-specific adaptation and
population-level consistency.

The 70% accuracy threshold achieved here establishes a
clinically viable foundation, particularly when consider-
ing federated learning’s inherent privacy advantages over
centralized alternatives. By preserving data locality while
extracting population insights, this approach balances the
competing demands of medical efficacy and privacy com-
pliance—a critical dual requirement for next-generation
healthcare Al. Future work should prioritize dataset ex-
pansion, multimodal data integration, and clinical valida-
tion to translate these algorithmic advances into tangible
patient outcomes.
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