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Federated Learning Overview:
Frameworks, Challenges, and Future

Directions

Abstract:

Yuqing Shao Federated Learning (FL) is a highly regarded distributed
machine learning framework that aims to enable

WNistfosnal Uktemsty of Stissms, C(.)llabo.rative modeling among multiple p'firties without

Singapore disclosing raw data.. Compared .to centrah.zed learning,

E1561365@u.nus.edu FL allows each participant to train models independently
on-site and upload model update parameters rather
than data to a central server, thereby improving model
performance while effectively protecting data privacy. As
artificial intelligence is increasingly applied in fields such
as healthcare, finance, and industrial loT, data privacy
and compliance requirements are becoming increasingly
stringent, highlighting the significant application potential
and research value of federated learning. This paper
systematically reviews the basic theories, core algorithms,
and technical approaches of federated learning, focusing
on research progress in areas such as communication
efficiency, data heterogeneity, privacy protection, and trust
mechanisms. The study also explored the development
prospects and future directions of federated learning in the
medical, financial, and precision computing fields. At the
same time, we conducted a more in-depth analysis of the
main challenges currently faced and analyzed potential
future research directions in order to provide a reference
for the continued development of this field.
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1. Introduction pressing issue. This imperative is definitely on the
last stage in sectors like healthcare, finance, and

Although datasets keep getting bigger and used for -4 cities, as the amount of user data in these fields

multiple purposes, data privacy becomes a major  .reates both possibilities and risks [1].

concern, and the rigorous investigation in priva-  Today, instead of collecting data on a central server,

cy-preserving machine learning frameworks is a  \hich can result in data leaks, the federated learn-



ing methods process data at the local ends for the central
server, which can in no way be a conduit for data viola-
tions and trust issues [2]. As research indicates, the grand
objective has been to find a data security framework that
preserves the delicacy of data without interrupting the ef-
ficiency of the system.

Federated learning (FL) became a significant possibility
for these issues and allows now several clients to train
an adequate model with only local data. Through distinct
devices or institutions, these models are trained on rich
data varieties, consequently broadening the generalizabil-
ity of them, as they utilize intermediate results from other
devices or institutions [3]. It assures the compliance with
data governance laws, such as GDPR and HIPAA, this is
one of the benefits, besides depth and richness of the data
collected as various datasets get pooled together from dif-
ferent countries and regions.

McMabhan, along with his co-authors, were the first ones
to coin the notion of federated learning (FL), or neighbor-
hood, in 2016. The critical assumption in its use is that
participants can jointly learn, in the absence of raw data
exchange, by constructing model parameters [4]. In this
respect, it helps overcome the problems of data silos by
removing the barriers of accessibility, and the data ana-
lytics and privacy policies become the secondary issues
because it is not the actual data that is used. One of the
hidden parts of the iceberg, and what breaches have really
been taken care of through decentralization along with
data silos and regulatory compliance, are data privacy is-
sues.

2. Basic Principles

Federated learning is a branch of distributed machine
learning that permits several clients (like IoT devices or
research institutions) to collectively train the learning
models while keeping the data on their local node [5].
Each client also has a model that it independently trains
using local data and, consequently, sends model parame-
ters or gradients to a central server, which also aggregates
them to form a new world model. This process of itera-
tions makes room for constant improvement of model per-
formance. Weighting is a method commonly used to apply
aggregation, where the weight assigned to each client’s
contribution is determined by factors like the volume of
data they offer.

2.1 Horizontal Federated Learning

Horizontal federated learning is suitable for scenarios
where clients share the same feature space but have differ-
ent sample sets. For example, banks in different regions
may record users’ transaction behaviors with consistent
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field structures but distinct user populations. This type of
federated learning is widely applied in fields such as fi-
nance and healthcare.

2.2 Vertical Federated Learning

Vertical federated learning is suitable for scenarios where
client samples are consistent, but feature spaces are dif-
ferent [6]. A typical example is when two companies have
the same users but different dimensions of information
(e.g., one has purchase records, and the other has brows-
ing records). Joint modeling is achieved by matching sam-
ple IDs.

2.3 Transfer Federated Learning

Federated learning is applicable in scenarios where clients
have independent sample spaces and feature spaces [7]. In
this context, knowledge transfer mechanisms are typically
established through methods such as transfer learning and
representation alignment to achieve joint modeling of ho-
mogeneous data. These approaches aim to bridge distribu-
tional gaps among clients, enabling more effective global
model aggregation [8].

3. Key Challenges in Federated Learn-
ing

3.1 Communication Efficiency

Federated learning’s communication efficiency is a cru-
cial factor that determines the performance of the whole
system. In most cases, the training process includes the
constant model updates between clients and the central
server from which the training takes place. Hence, the
related communication cost can become the bottleneck
very quickly, especially when it is a bandwidth-limited
environment or when there are fully diverse devices. This
problem has led to a variety of studies focusing on the
approaches that have smaller communication frequency or
size of data to maintain the integrity of the model. Tech-
niques such as model quantization, sparsification, and
local update aggregation have been widely explored to
alleviate communication overhead [9].

The most common delivery model in federated learning
is FedAvg, which performs a greater number of training
steps on the client side before sending an update to the
server. This way, more communication is less frequent.
On the other hand, this technique is easy to use and rather
innovative. However, it can be damaging to client data
segregation issues. To do this, FedDyn inserts regulariza-
tion terms that keep local training stable and equal while
providing an opportunity to aggregate.
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Moreover, compression techniques have been found to
be effective as well as algorithmic modifications. For in-
stance, using STC (Sparse Ternary Compression), the size
of the gradient updates after sparsification and quantisa-
tion can be achieved, thus resulting in the minimisation
of the data streamed. Considering the same, FedPAQ can
leverage periodic aggregation and quantized updates,
which can help minimize communication requirements,
leading to a higher level of accuracy and efficiency [10].
These methods, when taken together, reveal the ongoing
effort to bring federated learning to practical deployment
conditions where domain limitations and hardware vari-
ability are unavoidable. Nevertheless, this area requires an
extensive research effort to make federated learning both
scalable and feasible.

3.2 Data heterogeneity

In actual scenarios, clients within a federated system often
have distinct data distributions (Non-IID), which can lead
to increased local model bias and thus reduce the perfor-
mance of the global model [6]. To alleviate this problem,
FedProx introduces regularization terms into the objective
function to reduce local model deviation. Personalized
federated learning (e.g., PeFLL) allows clients to retain
locally customized components on top of a shared mod-
el, enhancing adaptability; multi-task federated learning
methods design differentiated model parameters for differ-
ent clients based on task correlations, improving conver-
gence.

3.3 Privacy and Security

Although FL structurally avoids the transmission of raw
data, the model parameters or gradient information trans-
mitted during the process may still be exploited by at-
tackers. Attack types include gradient inversion, member
inference, and backdoor attacks [3]. To enhance privacy
protection, differential privacy mechanisms inject noise
to increase uncertainty. Secure multi-party computation
(MPC) enables multiple participants to perform joint
computations without revealing inputs; and homomorphic
encryption technology enables direct computation on en-
crypted data, effectively mitigating information leakage
risks.

4. Typical Applications of Federated
Learning

Federated learning has been applied in several industries,
and the typical applications can be broadly categorized
into the following three categories according to the dis-
tinctions between the data subjects and system architec-

tures:

4.1 Medical and Health

In smart healthcare, hospitals, clinics, and other organi-
zations are difficult to directly share private patient infor-
mation data due to privacy compliance needs. Federated
learning enables medical institutions to collaboratively
train models for disease prediction, image diagnosis, etc.
by building a joint modeling framework without sharing
the original information data. For example, distinct hospi-
tals can jointly train lung CT diagnostic models to achieve
a win-win situation of model sharing and patient privacy
protection.

4.2 Communication Efficiency

Financial institutions such as banks, insurance, and
third-party credit bureaus usually hold distinct dimensions
of users’ information, and FL enables these organizations
to integrate the information without disclosing sensitive
data, which can be used to accomplish tasks such as credit
assessment and fraud detection [8]. For example, banks
and payment platforms can share modeling capabilities to
predict users’ credit risks, thus improving the accuracy of
risk control.

4.3 Communication Efficiency

In the Internet of Things (IoT) and edge computing en-
vironments, terminal devices such as cell phones and
computers have a large amount of local data. Federated
learning can support devices to train models locally, e.g.,
for input method prediction, speech recognition, or smart
home control, while guaranteeing that user data is not
uploaded to the cloud, thus improving privacy and system
response speed [5].

1. Research Trends and Future Out-
look

Furthermore, federated learning has also gradually ex-
panded to the fields of natural language processing, elec-
tric power system, intelligent manufacturing, etc., and has
shown a widely application prospect. Its ability to facil-
itate collaborative model training without exposing raw
data makes it especially suitable for domains with strict
privacy or security requirements.

2. Conclusion

As a product of the integration of collaborative training
and data privacy, federated learning provides a new para-
digm for multi-data source modeling. By supporting local



modeling and cross-device collaboration, it effectively
alleviates data silos and privacy compliance challenges,
demonstrating significant theoretical value and applica-
tion potential. However, current research still has many
shortcomings, such as excessive communication and
computing resource consumption, insufficient adaptabil-
ity to heterogeneous data, and potential risks in terms of
security and robustness. At the same time, some main-
stream methods make many idealized assumptions in their
experimental settings and lack an in-depth analysis of the
challenges of deploying federated systems in real-world
complex environments.

Future research should transcend the single goal of algo-
rithmic precision and focus on a comprehensive balance
of system performance, including personalized demand
fulfillment, model convergence speed, energy efficiency
management, and maintainability design. Additionally,
more systematic evaluation frameworks and open-source
benchmark tools will become critical enablers for collab-
orative innovation within the FL community. We believe
that only by balancing practicality and scalability can fed-
erated learning truly become a key driver for privacy-pre-
serving Al applications.
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