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Abstract:

Breakthroughs in deep learning have ushered in
transformative opportunities for interdisciplinary
research in the emerging field of “Al + Meteorology.”
Among the most challenging and societally impactful
problems in this domain is the prediction of severe
convective weather, which is characterized by highly
dynamic and complex atmospheric processes. This paper
provides a comprehensive overview of recent theoretical
advancements and methodological innovations in applying
deep neural networks to severe convective weather
forecasting. It systematically reviews the limitations of
traditional numerical and statistical methods, discusses
representative datasets and evaluation metrics, and
emphasizes the integration of physical and data-driven
modeling principles. The application and performance
of various deep learning models—including recurrent
and non-recurrent architectures, generative approaches,
and large-scale meteorological models—are thoroughly
analyzed. In addition, the paper highlights critical
challenges such as long-tailed data distributions, model
interpretability, and lack of physical consistency.
Finally, it outlines prospective research directions and
open questions, aiming to offer both theoretical insights
and practical guidance for developing next-generation
intelligent weather prediction systems.
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1. Introduction

The global climate system is undergoing dramatic
changes with a significant warming trend. From 1880

to 2023, the global average temperature rise has
reached 1.15+0.13°C, which has directly intensified
the frequency and destructive intensity of severe con-
vective weather [1]. Observation data indicate that
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global severe convective weather events have increased
at a rate of 8.7% per decade between 1973 and 2022, and
their characteristics of suddenness and locality pose se-
vere challenges to disaster prevention and mitigation sys-
tems [2].

Severe convective weather is an umbrella term for haz-
ardous weather phenomena caused by intense vertical air
movement, including thunderstorm gales (wind speed
>17m/s), short-duration heavy rainfall (>20mm per hour),
and hailstorms (diameter >5mm) [3]. Such weather, char-
acterized by rapid variability and high destructiveness,
remains a key challenge in weather forecasting.
Traditional prediction methods have notable limitations:
Numerical Weather Prediction (NWP), which relies on
solving physical equations, offers physical consistency but
comes with high computational costs and insufficient ac-
curacy in short-term forecasts (0—2 hours). Extrapolation
methods, while fast and efficient as they extrapolate based
on observation data, struggle to capture the formation and
dissipation of systems [4].

As a representative data-driven approach, deep learning
can uncover underlying patterns from massive historical
observation data and has demonstrated unique advantages
in fields like image processing and time-series predic-
tion. Combined with data from remote sensing satellites,
radar detection, and ground observations, the application
of deep learning in severe convective weather prediction
has become a research hotspot. This paper will conduct
a systematic review of key methods, typical models, and
application practices of deep learning in severe convective
weather prediction, synthesize the current research status,
summarize the technological evolution path, and discuss
current challenges and future directions.

2. Traditional Methods for Severe Con-
vective Weather Prediction

2.1 Numerical Weather Prediction

Numerical Weather Prediction (NWP) quantitatively pre-
dicts future atmospheric states by solving fluid dynamics
and thermodynamics equations describing atmospheric
motion using large-scale computers [4]. Its workflow in-
cludes data collection, data assimilation, model operation,
and forecast output, with its physical basis rooted in the
laws of thermodynamics and Newton’s laws of motion,
offering significant advantages in mathematical rigor and
physical consistency.

NWP is widely applied in short-term and medium-term
weather forecasting, covering predictions of pressure,
temperature, humidity, wind, clouds, and precipitation,

and has become the primary method in meteorological
forecasting. Optimizations of high-resolution numerical
models and fusion of multi-source data have driven prog-
ress in severe convection prediction: Research utilizing
the Weather Research and Forecasting (WRF) model has
markedly enhanced the simulation precision of thunder-
storms, hailstorms, and other such systems by optimizing
cloud microphysical parameterization schemes and turbu-
lent diffusion mechanisms;the Zhejiang Rapid Update As-
similation System (ZJWARRS), with a spatial resolution
of 0.03°x0.03° and a 3-hour update frequency, has en-
hanced the spatiotemporal refinement capability of short-
term forecasts.

However, NWP has inherent limitations: Errors in the
initial field accumulate over time, and complex terrain in-
terferes with boundary layer processes, leading to forecast
biases in regions such as mountainous areas; it incurs high
computational costs and requires time integration for ini-
tialization and simulation, resulting in poor performance
in 0—2 hour nowcasting [5, 6]. To address these short-
comings, scholars have integrated machine learning with
NWP; for example, the XGBoost algorithm optimizes the
prediction of severe convective precipitation areas through
ensemble decision trees, increasing the Threat Score (TS)
by approximately 15% compared to traditional methods.

2.2 Extrapolation Forecasting Methods

Extrapolation methods, based on the assumption that
“weather systems move continuously,” predict future
states using radar and satellite observation data. Charac-
terized by small data volume and fast computation, they
serve as an important supplement to NWP [7]. Main-
stream methods include cross-correlation algorithms and
optical flow methods:

The cross-correlation algorithm (TREC) ascertains the
motion vector features of echoes through computing the
optimal spatial coherence of distinct regions in radar
echoes at adjacent time points, thereby projecting future
locations and rendering it a commonly employed tracking
method [8]. Improved TREC-based algorithms such as
COTREC (optimizing vector continuity) and DITREC
(incorporating differential images) have further enhanced
the stability of precipitation forecasts [9]. However, TREC
and its extensions can only predict positional changes of
precipitation systems and fail to characterize trends in
their intensity, leading to high failure rates in tracking in-
tense precipitation echoes.

Optical flow techniques compute the optical flow field of
radar echoes to acquire the motion vector field, offsetting
the limitations of cross-correlation methods and enhanc-
ing the performance of convective nowcasting systems



[10]. Nevertheless, optical flow methods still struggle to
cope with the rapid changes of severe convective weather,
have limited ability to capture long- and short-term fea-
tures, and cannot effectively simulate the formation and
dissipation of echoes.

Extrapolation methods also face multiple challenges in ap-
plication: The chaotic nature of severe convective weather
introduces inherent uncertainty in long-term predictions;
relying on historical data to infer future trends makes
them unable to reflect new patterns caused by climate
change, potentially producing misleading results; the lo-
cal characteristics of severe convection may be diluted in
large-scale datasets, leading to prediction biases in regions
with sparse or insufficiently representative data.

3. Datasets and Evaluation Metrics

3.1 Key Datasets

High-quality datasets form the foundation of deep learn-
ing modeling. Common datasets for severe convection
prediction include radar data, multimodal data, and re-
analysis data:

Among radar datasets, lowaRain and RYDL provide
precipitation observations with resolutions below lkm,
suitable for short-term nowcasting tasks of precipitation.
The Multi-Radar Multi-Sensor System (MRMS) provides
multi-radar precipitation data covering the United States
with a 2-minute temporal resolution, and is widely utilized
in analyzing and predicting short-duration heavy rainfall
events [11]. The OPERA dataset focuses on the Europe-
an region, providing radar precipitation data with a 2km
resolution to support research on large-scale precipitation
prediction.

Represented by SEVIR, multimodal datasets integrate
radar, satellite, and lightning observations, offering mul-
timodal meteorological data that covers the complete
observation of storm lifecycles, making them suitable for
research on multi-source data fusion [12].

Reanalysis datasets are comprehensive reconstructed
data of global or regional meteorological elements. As
the most widely used numerical weather prediction re-
analysis data globally, ERAS5 provides data with a 0.25°
spatial resolution and a 1-hour temporal step, serving as
one of the standard datasets for deep learning in weather
prediction tasks. Currently, mainstream meteorological
large models are all trained on this dataset [13]. CMA-RA
V1.5 is a high-resolution global reanalysis dataset devel-
oped by the China Meteorological Administration (CMA),
offering two spatial resolutions (10km and 25km) and a
1-hour temporal resolution. It integrates 40 years of his-
torical observation data and data from 48 global satellites,
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adopting advanced assimilation techniques such as Hy-
brid-4DEnVar and EnKF. Compared with CMA-RA V1.0,
the root mean square error of S00hPa geopotential height
is reduced by 22%. Its high spatiotemporal resolution and
multi-variable characteristics make it an important data
source for training meteorological large models, short-
term weather prediction, and long-term climate analysis
[14].

3.2 Evaluation Metric System

Evaluating model performance requires constructing an
indicator system from multiple dimensions, including
global accuracy, binary accuracy, downscaling accuracy,
and clarity:

Global accuracy metrics measure the overall proximity
between predicted results and observed data, covering all
pixels, and play a key role in verifying overall prediction
performance.Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE) serve as key metrics for assessing the
comprehensive model structure, where lower values signi-
fy better performance of the prediction model. The Pear-
son Correlation Coefficient (PCC) is commonly employed
to gauge the statistical association between observed and
forecast outcomes; the nearer its value to 1, the more ro-
bust the linear association between the two.

Binary accuracy assesses precipitation intensity on a pix-
el-by-pixel basis using a confusion matrix derived from
precipitation thresholds. It focuses on determining wheth-
er each pixel’s precipitation volume and intensity align
with predefined criteria (such as the 20mm/h benchmark
for short-duration heavy rainfall). Typical metrics in this
category include the Critical Success Index (CSI), Accu-
racy, Fl-score, Precision, Recall, Probability of Detection
(POD), and False Alarm Rate (FAR). In precipitation
evaluation, confusion matrices should be computed for
complete batches rather than individual small subsets.
Special attention must be paid to non-precipitation cases
to prevent assessment distortions arising from sample
imbalance.Downscaling Accuracy (DSA) reflects the
consistency between the conversion of low-resolution
data to high-resolution data by the model and the real
high-resolution data. Calculations must be performed on
multi-scale validation sets to avoid single-resolution bias-
es, and invalid data regions must be explicitly excluded.
If high-resolution ground truth is missing, it should be
marked as NA instead of zero to ensure evaluation accura-
cy. Clarity refers to the sensitivity of generated prediction
images and is a key criterion for evaluating the quality of
precipitation region boundaries and blurring issues. Since
extreme precipitation events typically involve small-scale
convective features, the clarity of generated images direct-
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ly affects the accuracy of characterizing severe convective
system structures. Frequently used metrics encompass
Gradient Difference Loss (GDL), Learned Perceptual Im-
age Patch Similarity (LPIPS), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM). That
said, these approaches have constraints and fail to fully
indicate whether clarity aligns with physical patterns. As
a result, they should be integrated with other assessment
methods to comprehensively gauge model performance.

4. Comparative Analysis of Deep
Learning Models in Severe Convection
Prediction

4.1 Classical Deep Learning Models

Recurrent models capture temporal dependencies through
recursive computation, primarily used for modeling short-
term weather evolution. Their core lies in accumulating
and learning temporal dynamics through hidden states,
performing strongly in prediction tasks on shorter time
scales (e.g., radar echo extrapolation, short-term pre-
cipitation prediction). CNN-based recurrent methods
incorporate Convolutional Neural Networks (CNN) into
traditional RNN structures, with ConvLSTM as a typical
representative. They replace fully connected operations in
LSTM with convolutional operations, enhancing spatial
awareness when processing gridded meteorological data
(e.g., radar images, satellite cloud images) while reducing
the number of parameters. In ConvLSTM, the input x, cell
state c, hidden state H, and their gating units (input gate
i, forget gate f, output gate o) are all represented as 3D
tensors, with state updates performed using local neigh-
borhood information.

PredRNN optimizes temporal modeling capabilities
through multi-level memory units on this basis. E3D-
LSTM enhances the correlation of spatiotemporal fea-
tures. MIM adopts cascaded memory modules combined
with hidden state difference operations to improve the
ability to model high-order non-stationarity. SwinLSTM
incorporates the window attention mechanism of Swin
Transformer, breaking through the limitation of the local
receptive field of convolution and enhancing the capture
of global spatial dependencies. Its core calculation formu-
la simplifies and integrates the gating mechanism into a
single gate.

Non-recurrent models enhance computational efficiency
and mitigate the vanishing gradient problem in informa-
tion propagation by eliminating recursive computation and
adopting a parallel computing structure. They primarily
rely on architectures such as CNN, Transformer, and fre-

quency-domain transforms for spatiotemporal modeling,
and demonstrate significant advantages in computational
efficiency, scalability, and training stability. The develop-
ment of non-recurrent methods can be divided into two
stages: before and after SiImVP. Models prior to SimVP
(e.g., RainNet, STConvS2S) removed recurrent units but
still relied on stepwise rolling inference for multi-step
prediction, leading to error accumulation. The proposal of
SimVP marked the entry of non-recurrent methods into
the end-to-end multi-step prediction stage. Through an en-
code-transform-decode architecture, it generates complete
spatiotemporal prediction sequences in one go, fundamen-
tally optimizing the application of non-recurrent methods
in weather prediction. MIMO-VP, based on Transformer’s
multi-input multi-output mode, captures long temporal de-
pendencies via the self-attention mechanism and outper-
forms SimVP on multiple benchmark datasets. As a stan-
dardized spatiotemporal prediction framework, OpenSTL
introduces the MetaFormer structure to connect the fields
of computer vision and meteorology, transferring visual
models such as ViT and Swin Transformer to precipitation
forecasting to enhance cross-scale feature fusion capabili-

ty.

4.2 Generative Models and Meteorological
Large Models

Generative models capture the uncertainty of weather
systems through modeling probability distributions, main-
ly including Generative Adversarial Networks (GANSs),
Variational Autoencoders (VAEs), and diffusion models,
which have demonstrated significant advantages in tasks
such as radar echo prediction, precipitation forecasting,
and extreme weather prediction. GANs consist of a gen-
erator and a discriminator. Through adversarial training,
the generator improves the authenticity of generated sam-
ples. In weather prediction, they generate possible future
weather fields by learning the statistical characteristics of
historical data. MoCoGAN performs motion modeling
by combining motion-content decomposition with RNN
to generate weather evolution sequences; TSGAN adopts
a two-stage GAN structure and combines ConvLSTM to
optimize the spatiotemporal consistency of precipitation
prediction ; PID-GAN introduces a physics-constrained
discriminator to ensure that the generated weather fields
conform to physical laws and reduce the risk of “plausi-
ble but implausible” results.Diffusion models generate
data through progressive noise addition and reversing the
denoising process, enabling the generation of smoother,
more stable, and high-resolution weather fields. PreDiff
combines latent variable diffusion with the Earthform-
er-UNet structure to enhance the uncertainty quantifi-



cation capability of precipitation probability prediction;
DiffCast decomposes global deterministic motion trends
and local random variations, and combines GTUNet for
temporal modeling, effectively improving the stability of
precipitation prediction on long-time scales.
Meteorological large models leverage massive data and
advanced architectures to achieve efficient global/regional
forecasting. Adopting an end-to-end learning paradigm
and integrating deep neural networks, physics-guided
mechanisms, and self-supervised learning, they demon-
strate strong generalization capabilities in long-time-
scale and large-scale weather prediction. FourCastNet
employs Adaptive Fourier Neural Operators (AFNO) for
global weather prediction, trained on ERAS5 data (0.25°
resolution, 6-hour intervals). Its core innovation lies in
combining Fourier Neural Operators (FNO) to model the
evolution of large-scale weather systems in the frequency
domain, with a computational speed nearly 10,000 times
faster than traditional NWP, enabling completion of 10-
day global predictions in less than 2 seconds. GraphCast
uses Graph Neural Networks (GNNs) for global weather
state modeling, trained on ERAS data (0.25° resolution,
6-hour time steps, 227 variables). Its key innovation is
the “Encode-Process-Decode” structure, which enables
efficient information propagation through multi-layer
GNNs. It outperforms traditional numerical models in
over 90% of meteorological variables, particularly excel-
ling in tasks such as tropical cyclone track prediction and
modeling of extreme weather events (e.g., atmospheric
rivers). Pangu-Weather utilizes a 3D Earth-specific Trans-
former (3DEST) for global weather prediction, trained on
ERAS5 data (0.25° resolution, 13 atmospheric variables
and 4 surface variables). Its core innovation is integrating
3D Transformer to capture interactions between different
pressure layers, with lower RMSE than ECMWF IFS for
key variables such as 500hPa geopotential height and 2m
temperature, and 7-day global forecasts taking less than 2
seconds.

5. Conclusion

While deep learning has demonstrated remarkable po-
tential in severe convective weather prediction—with
recurrent models excelling in short-term forecasting,
non-recurrent models boosting long-term efficiency, gen-
erative models strengthening uncertainty characterization,
and large meteorological models enabling global, efficient
prediction—it still faces practical challenges. On the data
front, extreme weather samples are scarce, and observa-
tions in regions such as plateaus and oceans remain insuf-
ficient, limiting models’ ability to identify and capture the
evolution of extreme events.
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