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Abstract:

As urbanization accelerates globally and intelligent
transportation technologies rapidly progress, the accurate
prediction of road traffic has emerged as a critical issue in
the field of smart transportation. This paper introduces a
comprehensive review of current research on traffic flow
prediction utilizing deep learning and related technologies.
It analyzes the limitations of current methods, such as
poor generalization to spatiotemporal heterogeneity,
reliance on external influencing factors, data quality and
quantity issues, and insufficient model explainability and
computational scalability. Furthermore, the paper outlines
the development trends of the field from the perspective
of multimodal data fusion, proposing a three-layer fusion
framework of data, models, and systems. Emphasis is
placed on ensuring data security and privacy through
multimodal data fusion and federated learning. The study
also discusses future directions, including dynamic feature
modeling, system deployment at the edge, and real-time
prediction. By analyzing the architecture and challenges
of current predictive models, this article offers theoretical
direction and technological insights for the advancement of
intelligent transportation technology.

Keywords: Deep learning; Traffic flow prediction; Spa-
tiotemporal dependencies; Multimodal data fusion; Edge

computing.

1. Introduction

to exceed 1.5 billion. The resulting increase in traffic
demand puts immense pressure on road infrastruc-

In recent decades, with the ongoing global metropol-
itan growth and the surge in vehicle ownership, con-
gested roadways have become a prominent obstacle
to sustainable urban development. By early 2025, the
number of registered vehicles worldwide is expected

ture, leading to reduced travel efficiency, elevated
accident rates, and a decline in overall quality of life.
Traffic flow forecasting, as a fundamental element of
intelligent transportation technologies, is essential for
optimizing road usage and improving transportation
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management.

Traffic flow prediction leverages historical data and ma-
chine learning techniques to forecast future traffic condi-
tions. It enables proactive traffic control and intelligent
traffic management by providing data-driven decision sup-
port. Accurate prediction of traffic flow can enhance route
planning [1], reduce congestion, improve road safety, and
support the development of smart cities. Traditional traffic
prediction models are primarily grounded in statistical
analysis and shallow machine learning techniques. Rep-
resentative examples include Autoregressive Integrated
Moving Average (ARIMA) models [2], Support Vector
Regression (SVR) [3], and other linear regression-based
approaches. However, such methods struggle to effective-
ly model the complex spatial and temporal correlations,
as well as nonlinear and dynamic traffic patterns. Conse-
quently, their prediction accuracy and generalization per-
formance remain unsatisfactory.

Recent advancements in deep learning and big data tech-
nologies have led to the increased application of different
deep neural network architectures—such as Recurrent
Neural Networks (RNNs), Convolutional Neural Net-
works (CNNs) [4], Long Short-Term Memory (LSTM),
and Gated Recurrent Units (GRUs). These methods offer
strong feature representation capabilities and can model
complex spatiotemporal dependencies, demonstrating sig-
nificant advantages in improving prediction performance
in traffic prediction tasks.

Nevertheless, current research still faces a range of chal-
lenges. These include external influencing factors (e.g.,
weather, social events), multimodal data integration,
model interpretability, and privacy protection in distrib-
uted environments. Therefore, the effective integration
of heterogeneous data and the practical implementation
of prediction models remain active research topics. This
study conducts a thorough evaluation of current research
on deep learning-based traffic forecasting and summa-
rizes prevailing challenges as well as future directions. It
intends to function as a significant reference for both the-
oretical research and practical implementations in intelli-
gent transportation technologies.

2. Problem Definition, Datasets, and
Evaluation Metrics

2.1 Problem Definition

Prediction of traffic flows involves the task of analyzing
and modeling traffic networks and their historical flow
data in order to forecast the traffic volume of specific road
segments over future time intervals. In this task, the traffic

is commonly shown using a structure G = (V, E, A), where
V refers traffic monitoring nodes, E denotes edges con-
necting these nodes, A is the adjacency matrix encoding
connectivity and weights among nodes in the network.

Based on the prediction range, prediction of traffic flow
is generally categorized into two types: (1) Short-term

prediction, denoted as T,,,, typically with a time granu-

larity of hours; (2) Long-term prediction, denoted as YA",

ong >
which may span days, weeks, or even longer periods.
Input of prediction task is formulated as a time series

NxCxT NxCxT
sequence X, =(x,...x;) € RV’ where x, € RV

indicates the traffic status of all monitoring nodes at
timestamp t; N denotes the nodes count within the traffic
monitoring network; C represents the number of traf-
fic-related features collected at each node, such as speed,
weather conditions, or traffic events.

The core challenge of this problem lies in learning from
both current and historical traffic states while incorporat-
ing the spatial topology of traffic network to capture the
complex spatiotemporal dependencies among road seg-
ments. The modeling aim is to develop a mapping func-
tion f to predict the status at the subsequent T’ timestamp,
formulated as:

X;G)>(Y,.0Y, ). (1)

2.2 Key features

Traffic flow prediction is a complex task due to the fol-
lowing key characteristics: (1) Non-linearity: The evolu-
tion of traffic flow is inherently non-linear, as it involves
complex interactions among temporal and external fac-
tors. For instance, road congestion often exhibits threshold
effects, where even small perturbations can lead to signif-
icant, abrupt changes. Additionally, external factors such
as weather and accidents contribute further non-linear
dynamics. As a result, traditional linear prediction models
(e.g., autoregressive models) are often inadequate for cap-
turing the complex non-linear behaviors in traffic systems;
(2) Dynamic nature: Traffic systems are highly dynamic,
with traffic flow continuously fluctuating and being influ-
enced by sudden events, resulting in abrupt changes and
intense volatility. For example, rush hours, road closures,
or extreme weather events can lead to unpredictable and
transient disruptions. Accurate forecasting requires models
that can encapsulate both transient variations and endur-
ing trends. However, traditional models that rely on stable
or smoothed historical patterns often struggle to adapt to
such dynamic environments; (3) Heterogeneity: Traffic
data exhibits significant spatial and temporal heteroge-



neity. Different regions and time periods often display
distinct traffic patterns and variations. For example, ex-
pressways and urban roads, weekdays and weekends, may
follow drastically different flow patterns. This heterogene-
ity makes it difficult for models trained on one scenario to
generalize well to others. Thus, models must be capable
of adapting to diverse spatial and temporal distributions;
(4) Multi-scale characteristics: Traffic flow exhibits de-
pendencies across multiple spatial and temporal scales.
Temporally, traffic may show periodicity on hourly, daily,
or weekly scales, alongside random fluctuations. Spatially,
traffic patterns can vary significantly across regions, from
individual road segments to the entire urban road network.
Therefore, effective models must integrate features at var-
ious spatial and temporal scales to better capture the hier-
archical and the inherent multi-level nature of traffic flow.

2.3 Traffic Flow Prediction Datasets

To evaluate and compare different traffic flow prediction
methods, the research community has established a series
of publicly available benchmark datasets. Among them,
several representative datasets include:

METR-LA Dataset: The METR-LA dataset is a traffic
speed dataset for the Los Angeles County highway net-
work, collected and released by the University of Southern
California and other collaborators. It includes traffic speed
readings from 207 sensor stations across the Los Angeles
area, covering the period from March 2012 to June 2012,
with a sampling interval of 5 minutes. The dataset features
traffic conditions on complex urban highways and is wide-
ly adopted as a benchmark for spatiotemporal prediction
models due to its data quality, spatial coverage, and open
accessibility. It is particularly useful for evaluating model
performance under urban traffic dynamics.

TaxiBJ Dataset: TaxiBJ is a large-scale open dataset for
urban traffic volume prediction. It contains GPS trajectory
and related contextual information from Beijing taxi trips.
A typical subset used for research transforms the raw data
into a 32x32 spatial grid format, with aggregated traffic
volume recorded at 30-minute intervals. The dataset spans
four distinct time periods from 2013 to 2016. Due to its
inclusion of large-scale, high-resolution urban mobility
data, TaxiBJ has been widely employed for modeling and
predicting city-level traffic demand, human mobility, and
flow patterns. It is one of the most frequently used open-
source datasets for spatiotemporal deep learning in traffic
prediction tasks.

PeMS Dataset: The PeMS (California Performance Mea-
surement System) is a traffic flow data collection platform
maintained by the California Department of Transporta-
tion. It provides live traffic information, including vehicle

Dean&Francis

KAI LIU

count and speed metrics, gathered from more than 45,000
sensors installed across major California freeways. PeMS
offers abundant historical records. For instance, the PeMS-
Bay dataset includes traffic flow readings from 325 sensor
stations across the Bay Area, recorded every 5 minutes
from January to May 2017. Commonly used subsets in re-
search include PeMS-D4, D7, and D8, each corresponding
to data from different regions (e.g., PeMS-D4 covers 307
sensors in the San Francisco Bay Area over a 2-month pe-
riod). Owing to its large scale, fine granularity, and public
accessibility, PeMS has become a widely used benchmark
for validating traffic prediction models.

2.4 Model Evaluation Metrics

In traffic flow prediction research, model performance is
commonly evaluated by quantifying the error between
forecasted values and ground truth observations. The most
often adopted assessment metrics comprise the following:
Mean Absolute Error (MAE): MAE quantifies the average
extent of the absolute difference among forecasted and
true results. It is defined as:

, 2)

MAE = li‘yi _3}:
ng

where y, represents the true values, whereas y, signifies

the predicted values, and Nrepresents the total number
of predictions. MAE reflects average level of prediction
bias. A smaller MAE indicates better total predictive ac-
curacy of the model.

Root Mean Square Error (MSE): RMSE is the square root
of the average of squared prediction errors, defined as:

RMSE = /%_’2@;%)2. 3)

Compared to MAE, RMSE places greater emphasis on
larger deviations because it involves squaring the predic-
tion errors, which increases its sensitivity to outliers. A
lower RMSE suggests that the model has higher precision
and better stability in its predictions.

Mean Absolute Percentage Error (MAPE): MAPE eval-
uates average relative forecasting error expressed as per-
centage, defined as:

n

100%
MAPE =——
a3y

Vi
It indicates the mean percentage divergence of the pre-
dicted values from the actual values. As it is formulated
in percentage terms, MAPE allows comparison of model

performance across datasets of different scales. However,

4)

i=1

care should be taken when y, is close to zero, as this can
result in disproportionately large errors or instability in
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MAPE.

In general, the lower the values of the above metrics, the
more accurate the model’s predictions. These metrics are
frequently used in the literature to assess model effec-
tiveness and facilitate fair comparisons across different
approaches.

3. Deep Learning-Based Models for
Traffic Flow Forecasting

Deep learning has emerged as a key methodology for traf-

fic flow forecasting. Due to the rapid expansion of data
and increased computing power, traditional prediction
methods have shown limitations in feature extraction.
Deep neural networks, by contrast, can automatically learn
intricate spatiotemporal patterns from massive traffic data,
yielding far superior predictive power. This section pro-
vides a summary of traffic flow forecasting models based
on deep learning. As shown in Table 1, it compares their
methodological advances and performance.

Table 1. Comparative Analysis of Different Models in Traffic Flow Prediction

Model Name Main Strategy Applicable Scenario Characteristics
. . Complex traffic environments | Strong adaptability; capable of handlin
MF-CNN Multi-source feature fusion | . p . & p Y P . &
influenced by multiple factors | weather, holidays, and other disturbances
DGCNN Temporal feature-aware | Scenarios requiring high tem- | Effectively captures complex spatial struc-
graph convolution poral dependencies tures in road networks
. . . High spatiotemporal representation capa-
Spatiotemporal convolution | Long-term data missing or| .~ . .
3D-CNN ) bility; improved prediction performance on
(TF-3DNet) sparse scenarios .
incomplete data
Spatiotemporal coordina- | Scenarios with diverse traffic | Captures regional behavioral differences
DST-3D-CNN tion + region-aware sensi- | patterns across different re- | and conducts fine-grained dynamic model-
tivity gions ing
Multi-graph attention| . Captures dependencies between key nodes;
. . . Mid-to-long-term traffic trend .
MGDAM mechanism + spatial salien- . applicable to both traffic volume and speed
forecasting .
cy transmission
Leverages realistic traffic diffusion charac-
Diffusion convolutional re- | Regions with clear traffic| . . ) ) ..
DCRNN & . teristics; suitable for modeling directional
current structure flow propagation patterns .
traffic signals
. . . |Early-morning traffic with . . .
L Multivariate time series ) . Supports multivariate input; effective for
Multivariate LSTM . strong inter-variable correla- : . )
modeling i capturing correlations among variables
ions
LSTM<+ Attention mechanism inte- | Complex and fine-grained | Enhances model sensitivity to key features
grated into LSTM long-term forecasting tasks | and improves memory capability
GRU-RNN GRU-based recurrent neu- | Urban traffic prediction with | Lightweight architecture; suitable for re-
ral network textual or time-series signals | al-time and nonlinear traffic prediction
Transformer-based se-|Urban-level traffic incident | Supports parallelism, multi-head attention,
TrafficTransformer . . .
quence modeling prediction and long-term sequence learning
TrafficGAN Adversarial training mecha- | Forecasting under highly dy- | Captures complex distributions and im-
raffic . . . .
nism namic or rare traffic events proves adaptability to anomalous scenarios

3.1 MCNN-Based Traffic Flow Prediction Mod-
els

CNNs have exhibited exceptional efficacy in computer
vision and have been applied to traffic flow forecasting
as well. In this context, traffic flow data can be structured
analogously to images: for example, a city map is divided

into grids so that each pixel represents the traffic volume
or speed in a specific region over time. By leveraging
techniques from image recognition, CNN models can
effectively capture the spatial relationships and spatiotem-
poral features in traffic data. This allows CNNs to learn
patterns of traffic flow distribution across both space and



time, which is crucial for accurate prediction.

However, vanilla CNN approaches still face challenges in
modeling complex temporal dynamics and incorporating
external influences on traffic. To overcome these limita-
tions, researchers have suggested many advanced CNN-
based architecture in traffic flow prediction. Key CNN-
based models and their contributions include:

Data Grouping CNN (DGCNN) — Yu et al. introduced
a data grouping strategy that partitions the input traffic
data along dimensions such as time intervals and spatial
regions before feeding it into a CNN [5]. By grouping
data based on temporal and spatial characteristics, their
DGCNN model enables the network to better capture
complex localized traffic patterns and improves adaptabil-
ity and prediction accuracy. Empirical studies showed that
this method significantly enhanced short-term traffic flow
forecasting accuracy compared to standard approaches.
Multi-Feature Fusion CNN (MF-CNN) — Yang et al. pro-
posed an MF-CNN model to integrate external factors (e.g.
weather conditions, holidays, temperature, wind speed)
into CNN-based traffic prediction [6]. The MF-CNN
architecture employs an early-fusion strategy with time
alignment: external variables are concatenated with main
traffic features — such as short-term temporal continuity
(denoted C), daily periodicity (D), weekly periodicity (W)
— along feature dimension, forming a unified multi-di-
mensional input tensor. This design ensures that external
factors are temporally synchronized with the traffic se-
quence, allowing the CNN to jointly model their influence
on traffic flow. In experiments on two datasets (JPEA
and PeMS), the inclusion of these external features led
to continuous performance improvements; notably, after
adding external factors (denoted E), the Mean Absolute
Error (MAE) dropped from 0.0098 to 0.0096 on JPEA and
from 0.0257 to 0.0254 on PeMS, effectively improving
prediction accuracy. These results empirically validate the
positive contribution of incorporating external factors in
multi-step traffic flow prediction.

3D-CNN - To further capture dynamic temporal features
and spatial dependencies in traffic data, Yu et al. developed
a 3D Convolutional Neural Network for large-scale traffic
flow prediction [7]. Unlike a conventional 2D CNN that
models only spatial patterns on a static grid, a 3D-CNN
uses three-dimensional convolutional kernels to simulta-
neously capture and integrate across both space and time.
This joint spatiotemporal modeling approach enables the
network to learn the temporal evolution of traffic directly
within the convolution layers. The 3D-CNN method was
shown to improve prediction accuracy for large traffic net-
works, and it also demonstrated greater robustness in the
face of missing data by learning temporal continuity — in
other words, the model can better interpolate or withstand
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gaps in sensor data due to its understanding of how traffic
flows evolve over time.

Deep Spatial-Temporal 3D-CNN (DST-3D-CNN) — Build-
ing on the 3D-CNN, Guo et al. proposed an enhanced
model called DST-3D-CNN (also referred to as ST-3DNet)
tailored for traffic data forecasting [8]. The DST-3D-CNN
inherits the joint spatiotemporal convolutional modeling
of 3D-CNN, but further introduces a novel recalibration
(Rc) block to dynamically adjust for regional differences
in traffic patterns. This Rc block enables the model to ex-
plicitly account for spatial heterogeneity — i.e. the fact that
different road segments or regions may exhibit different
traffic dynamics — which earlier CNN models with uni-
form convolution often ignored. By recalibrating feature
responses based on location-specific characteristics, DST-
3D-CNN better captures complex, non-uniform spatial
influences. Empirical results indicate that this approach
achieves superior performance in complex urban traffic
scenarios, outperforming prior CNN models by effectively
addressing the issue of spatial heterogeneity. In summary,
DST-3D-CNN demonstrates more robust predictive capa-
bility in city-scale traffic networks with diverse regional
traffic behaviors.

3.2 Traffic Flow Forecasting Using Graph Con-
volutional Networks (GCN)

Compared with traditional CNNs, GCNs are better suited
for modeling the complex spatial structures of non-Euclid-
ean domains like road networks [9]. The core idea behind
GCN:s is to enable each node in the traffic graph to aggre-
gate its own features along with those of its neighbors,
thereby learning spatial dependencies across the network.
The standard layer-wise propagation rule for GCNs, as
proposed by Kipf et al. [10], is formulated as:

1 1
H' = f(H”,A):o(D 24D ZH”W”J 5)

In Equation (2), X € R™ is the input feature matrix,
with N indicating the number of nodes and F, denoting

the quantity of starting features per node. 4 R"™" is an
adjacency matrix encoding spatial connections between
nodes. However, multiplying 4 with the hidden feature
matrix only allows information from neighboring nodes
to propagate, and excludes the node’s own features. To re-
solve this, each node is connected to itself via a self-loop,

modifying the adjacency matrix to 4= A+1, where /

denote the identity matrix. The diagonal degree matrix D

is calculated by D, = Z ; A; - The initial hidden represen-
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. . _ -1 ol .
tation is setas H'” =X, W' e R" ™" represents a train-

able weight matrix and o(-) denotes an activation func-

tion, typically sigmoid or ReLU.

While this propagation rule has been widely applied in
GCN-based models, it has limitations in traffic flow pre-
diction. Specifically, it assumes a static graph structure
and cannot model time-varying upstream and downstream
traffic relationships. To address this limitation, Abu-El-
Haija et al. proposed incorporating graph attention mech-
anisms [11], which assign learnable attention weights to
neighbors, enabling the model to adaptively modulate
each node’s impact over time. This approach helps the
model better represent the real-world, time-sensitive vari-
ations in traffic networks.

In order to better model spatial-temporal correlations,
Li et al. proposed the Diffusion Convolutional Recurrent
Neural Network (DCRNN) for traffic prediction [12]. This
model employs diffusion convolution to represent the di-
rected nature of traffic propagation, integrated with recur-
rent components to capture temporal dynamics.
Extending this line of work, Wang et al. developed the
Multi-Graph Diffusion Attention Network (MGDAN)
[13]. Unlike DCRNN, which uses a static graph, MGDAN
constructs multiple adaptive graphs and employs attention
mechanisms to model spatial correlations over long range
and nonlinear temporal relationships. This enhances the
model’s ability to comprehend intricate spatiotemporal
patterns and improves its performance in long-term traffic
prediction tasks. This greatly enhances the modeling ca-
pability for long-range spatial dependencies and nonlinear
temporal patterns. This enables the effective capture of
long-term temporal dynamics, thereby enhancing the per-
formance of medium and long-term traffic flow prediction.

3.3 RNNs for Traffic Flow Forecasting

Traffic flow data are a typical form of sequential data, and
extracting its temporal characteristics is critically import-
ant for accurate traffic flow prediction. RNNs and their
variants, such as LSTM networks and GRU-RNNs, have
therefore been widely utilized in this domain. Baskar et
al. developed a multivariate LSTM-based model for short-
term traffic flow prediction in intelligent-driven transpor-
tation technologies [14], and their results indicated that
compared to univariate LSTM models, the proposed ap-
proach achieves higher prediction accuracy.

However, as the length of the input time series grows (e.g.
beyond two hours of data), even LSTM models struggle
to capture such long-range temporal relationships in traffic
flow. Yang et al. addressed this limitation by incorporating
an attention mechanism into the LSTM’s temporal mod-
eling in order to identify the long-sequence traffic flow

features that have a significant impact on prediction re-
sults [15]. On this basis, they proposed a feature-enhanced
LSTM model (denoted as LSTM+), which strengthens the
LSTM’s capability to retain information over ultra-long
time dependencies.

Many traffic flow prediction models also suffer from the
vanishing gradient problem, resulting in information loss
throughout the training process. To address the issue, Yu et
al. introduced a RNN model using a GRU-RNN approach
to elucidate the interdependencies within traffic flow data
[16]. This model leverages specialized activation and
gating functions to mitigate the issues of gradient explo-
sion and vanishing in RNN training, thereby achieving
high-accuracy predictions even for long-range traffic flow
forecasting.

3.4 Transformer-Based Traffic Flow Forecasting

Compared with traditional CNN and RNN architectures,
the Transformer model demonstrates stronger capabilities
in handling sequential tasks. Unlike RNNs, Transformers
offer superior parallel computation and can capture global
contextual information more efficiently through self-at-
tention mechanisms, enhancing the modeling of complex
dependencies in traffic data. The Transformer builds a
complete dependency structure between input and output
solely via attention mechanisms.

Al-Thani et al. introduced a Transformer-based traffic
forecasting model [17], Traffic Transformer, to perform
multivariate and multi-step prediction. The model utiliz-
es an attention mechanism of the transformer to capture
long-term temporal relationships by turning irregular
traffic data into a regular time-series structure. Compared
with RNN-based architectures such as LSTM, this model
shows enhanced parallelism and modeling ability, result-
ing in improved performance in multi-step forecasting
tasks.

3.5 Traffic Flow Prediction Based on GANs

GANSs constitute a cutting-edge advancement in deep
learning and have been utilized for traffic flow forecast-
ing. Neural network models can generally be categorized
as discriminative or generative. A discriminative model
learns the conditional probability distribution between
inputs and outputs, thereby allowing it to predict outputs
given certain inputs. In contrast, a generative model learns
the joint distribution of inputs and outputs and can gener-
ate new sample data that resemble the distribution of the
training data. By leveraging an adversarial training pro-
cess between a discriminator and a generator, GANSs effec-
tively fuse the spatial and temporal dependencies inherent
in traffic flow data, which improves the modeling of



temporal correlations and enhances the accuracy of traffic
state estimation [18]. In other words, the GAN framework
enables the model to capture complex time-dependent
patterns in traffic flow more effectively than conventional
predictive models.

However, traditional traffic flow prediction models have
limited capability to learn such complex and dynamic data
distributions. They often struggle to handle the highly
variable and non-stationary traffic patterns observed in
real-world road networks. To address these challenges,
Zhang et al. introduced a GAN-based traffic flow forecast-
ing model called TrafficGAN [19], aimed at short-term
traffic prediction at the urban road-network scale. Traffic-
GAN integrates a CNN and a LSTM network to jointly
capture temporal and spatial correlations in traffic data.
Within this architecture, the CNN component is responsi-
ble for extracting and modeling spatial characteristics of
the roadway system (such as connectivity or proximity of
road segments), and the LSTM portion captures sequential
temporal dynamics of traffic flow over time. Moreover,
TrafficGAN employs deformable convolutional kernels
to more efficiently process the spatial heterogeneity in
the road network, allowing model to adapt to irregular
traffic network structures. Through its adversarial train-
ing mechanism (in which a generator produces predicted
traffic flow sequences and a discriminator evaluates their
realism), TrafficGAN learns the underlying distribution of
historical traffic flow patterns. Consequently, it can gen-
erate predictions that more closely align with true future
traffic conditions, achieving higher accuracy in forecasting
future traffic volumes compared to conventional methods.

4. Challenges in Road Traffic Flow
Forecasting

Precise forecasting of traffic flow is essential for efficient
transportation management. Despite the advancements
brought by deep learning models—such as better utiliza-
tion of large-scale data and improved accuracy—several
real-world challenges remain:

Dynamic and Uncertain Influences: Traffic flow is affected
by diverse external variables, including road conditions,
accidents, weather, special events. These influences in-
teract and contribute to the highly uncertain and dynamic
nature of traffic states, making stable prediction difficult.
Spatio-temporal Dependency Modeling: Traffic data ex-
hibits complex spatio-temporal patterns. Variations arise
from periodic trends and sudden changes, while the struc-
tural complexity of road networks introduces significant
spatial heterogeneity. Even geographically similar areas
may show different flow patterns due to factors like popu-

Dean&Francis

KAI LIU

lation and infrastructure differences.

Data Quality Issues: Deep learning relies on high-quality
data, yet traffic datasets often suffer from missing values,
noise, or sensor failures. These issues degrade model
performance and complicate consistent evaluation across
methods, especially when data is collected from heteroge-
neous sources.

Deployment Constraints: Deploying deep learning models
in real-world environments is challenging due to limited
computing resources on edge devices like in-vehicle or
roadside units. The complexity of many models hampers
real-time application, highlighting the need for light-
weight architectures and model compression techniques.

5. Challenges in Road Traffic Flow Pre-
diction

5.1 Data Layer

In the data layer, future research should emphasize multi-
source data fusion to integrate diverse traffic data and
extract richer information. This involves incorporating
heterogeneous data from various sources (for example,
combining loop detector data with GPS probe data, cam-
era feeds, and even mobile phone signaling data) to pro-
vide a more comprehensive basis for prediction.

It is important to include relevant external factors like traf-
fic incidents or weather conditions—so that models can
account for these influences on traffic flow. Additionally,
improving data quality through cleaning and preprocess-
ing, as well as establishing real-time data updating mech-
anisms, will enhance the reliability of predictions.

By enriching data diversity and quality in this way, we can
better capture underlying traffic patterns and spatiotempo-
ral features needed for accurate forecasting.

5.2 Model Layer

In the model layer, the focus is on developing advanced
models and algorithms that can more effectively capture
the intricate spatial and temporal dynamics of traffic flow.
Future models should leverage sophisticated neural net-
work architectures to exploit these patterns—for instance,
applying graph convolutional networks (GCN) to model
spatial relationships among road segments, and recurrent
networks or attention-based Transformers to represent
temporal dependencies and evolving trends.

There is value in combining the strengths of different
approaches (such as CNN, GCN, RNN, GRU, and Trans-
former models) to form hybrid models that can learn
multi-scale and multi-dimensional features of traffic data.
Incorporating attention mechanisms can help the model
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concentrate on key temporal—spatial information, and in-
tegrating domain knowledge (e.g. known traffic flow laws
or constraints) may improve interpretability and robust-
ness.

Moreover, researchers are beginning to explore the use
of large-scale pre-trained models and transfer learning
in this field—foundation models like GPT and advanced
patio-temporal networks such as DeepSTN+ could be
adapted to traffic prediction to further boost performance.
These directions aim to improve prediction accuracy, sta-
bility, and interpretability by leveraging comprehensive
data attributes and cutting-edge Al methodologies.

5.3 Edge-End Collaboration

Another important future direction is the edge-end collab-
oration in intelligent traffic prediction systems. With the
proliferation of IoT devices and advances in edge comput-
ing, parts of the predictive computation can be deployed
on distributed edge devices (such as sensors, connected
vehicles, or roadside units) in coordination with central-
ized cloud servers. This collaborative computing paradigm
reduces latency and bandwidth usage by processing data
locally at the edge and only transmitting necessary infor-
mation to the cloud, enabling more timely and responsive
traffic flow predictions.

For example, an edge device at an intersection could
perform initial data filtering or local prediction updates,
which are then integrated with a global model at the
cloud, combining real-time local insights with a broader
network-wide perspective. Such an approach can also
enhance reliability and privacy — local processing means
critical data can be analyzed on-site without constant
cloud communication, and systems remain functional
even if connectivity is temporarily lost.

Moving forward, research will need to address challenges
like model optimization for resource-constrained edge
hardware, efficient coordination protocols between edge
and cloud, and possibly federated learning techniques to
train models across multiple edge nodes. Overall, cloud-
edge-end collaborative frameworks are expected to form a
key part of future traffic prediction architectures, allowing
systems to deliver faster, more scalable, and context-aware
forecasting of road traffic conditions.

Conclusion

This paper presents a comprehensive review of deep
learning-based approaches for traffic flow prediction in the
context of smart transportation. It highlights key limita-
tions of existing methods, including poor spatiotemporal
generalization, dependence on external factors, data quali-
ty and availability issues, and limited model interpretabili-

ty and scalability.
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